×

Χρησιμοποιούμε cookies για να βελτιώσουμε τη λειτουργία του LingQ. Επισκέπτοντας τον ιστότοπο, συμφωνείς στην πολιτική για τα cookies.

image

TED-Ed, The high-stakes race to make quantum computers work - Chiara Decaroli

The high-stakes race to make quantum computers work - Chiara Decaroli

The contents of this metal cylinder could either revolutionize technology

or be completely useless—

it all depends on whether we can harness the strange physics of matter

at very, very small scales.

To have even a chance of doing so,

we have to control the environment precisely:

the thick tabletop and legs guard against vibrations from footsteps,

nearby elevators, and opening or closing doors.

The cylinder is a vacuum chamber,

devoid of all the gases in air.

Inside the vacuum chamber is a smaller,

extremely cold compartment, reachable by tiny laser beams.

Inside are ultra-sensitive particles that make up a quantum computer.

So what makes these particles worth the effort?

In theory, quantum computers could outstrip the computational limits

of classical computers.

Classical computers process data in the form of bits.

Each bit can switch between two states labeled zero and one.

A quantum computer uses something called a qubit,

which can switch between zero, one, and what's called a superposition.

While the qubit is in its superposition,

it has a lot more information than one or zero.

You can think of these positions as points on a sphere:

the north and south poles of the sphere represent one and zero.

A bit can only switch between these two poles,

but when a qubit is in its superposition,

it can be at any point on the sphere.

We can't locate it exactly—

the moment we read it, the qubit resolves into a zero or a one.

But even though we can't observe the qubit in its superposition,

we can manipulate it to perform particular operations while in this state.

So as a problem grows more complicated,

a classical computer needs correspondingly more bits to solve it,

while a quantum computer will theoretically be able to handle

more and more complicated problems

without requiring as many more qubits as a classical computer would need bits.

The unique properties of quantum computers

result from the behavior of atomic and subatomic particles.

These particles have quantum states,

which correspond to the state of the qubit.

Quantum states are incredibly fragile,

easily destroyed by temperature and pressure fluctuations,

stray electromagnetic fields,

and collisions with nearby particles.

That's why quantum computers need such an elaborate set up.

It's also why, for now,

the power of quantum computers remains largely theoretical.

So far, we can only control a few qubits in the same place at the same time.

There are two key components involved

in managing these fickle quantum states effectively:

the types of particles a quantum computer uses,

and how it manipulates those particles.

For now, there are two leading approaches:

trapped ions and superconducting qubits.

A trapped ion quantum computer uses ions as its particles

and manipulates them with lasers.

The ions are housed in a trap made of electrical fields.

Inputs from the lasers tell the ions what operation to make

by causing the qubit state to rotate on the sphere.

To use a simplified example,

the lasers could input the question:

what are the prime factors of 15?

In response, the ions may release photons—

the state of the qubit determines whether the ion emits photons

and how many photons it emits.

An imaging system collects these photons and processes them to reveal the answer:

3 and 5.

Superconducting qubit quantum computers do the same thing in a different way:

using a chip with electrical circuits instead of an ion trap.

The states of each electrical circuit translate to the state of the qubit.

They can be manipulated with electrical inputs in the form of microwaves.

So: the qubits come from either ions or electrical circuits,

acted on by either lasers or microwaves.

Each approach has advantages and disadvantages.

Ions can be manipulated very precisely,

and they last a long time,

but as more ions are added to a trap,

it becomes increasingly difficult to control each with precision.

We can't currently contain enough ions in a trap to make advanced computations,

but one possible solution might be to connect many smaller traps

that communicate with each other via photons

rather than trying to create one big trap.

Superconducting circuits, meanwhile, make operations much faster than trapped ions,

and it's easier to scale up the number of circuits in a computer

than the number of ions.

But the circuits are also more fragile,

and have a shorter overall lifespan.

And as quantum computers advance,

they will still be subject to the environmental constraints

needed to preserve quantum states.

But in spite of all these obstacles,

we've already succeeded at making computations

in a realm we can't enter or even observe.

Learn languages from TV shows, movies, news, articles and more! Try LingQ for FREE

The high-stakes race to make quantum computers work - Chiara Decaroli |||||||||Chiara Decaroli|Chiara Decaroli Der Wettlauf um das Funktionieren von Quantencomputern steht auf dem Spiel - Chiara Decaroli La carrera por hacer funcionar los ordenadores cuánticos - Chiara Decaroli La corsa alla sicurezza per far funzionare i computer quantistici - Chiara Decaroli 量子コンピュータの実現に向けた賞金レース - キアラ・デカローリ Didelių statymų lenktynės siekiant sukurti kvantinius kompiuterius - Chiara Decaroli Wyścig o wysoką stawkę, aby komputery kwantowe działały - Chiara Decaroli A corrida de alto risco para fazer funcionar os computadores quânticos - Chiara Decaroli Гонка с высокими ставками за создание квантовых компьютеров - Кьяра Декароли Det står mycket på spel för att få kvantdatorer att fungera - Chiara Decaroli Kuantum bilgisayarları çalıştırmak için yüksek riskli yarış - Chiara Decaroli Гонка з високими ставками, щоб змусити квантові комп’ютери працювати – К’яра Декаролі 让量子计算机发挥作用的高风险竞赛——Chiara Decaroli 讓量子計算機發揮作用的高風險競賽——Chiara Decaroli

The contents of this metal cylinder could either revolutionize technology |||||metal container|||| Вміст цього металевого циліндра може зробити революцію в технології 这个金属圆筒里的东西可能会彻底改变技术

or be completely useless— 或者完全无用——

it all depends on whether we can harness the strange physics of matter |||||||utnyttja||||| 这一切都取决于我们是否能够驾驭物质的奇特物理

at very, very small scales.

To have even a chance of doing so, 为了有机会这样做,

we have to control the environment precisely: ||||||with exactness 我们必须精确地控制环境:

the thick tabletop and legs guard against vibrations from footsteps, ||table surface|||||||people walking товста стільниця і ніжки захищають від вібрації від кроків, 厚厚的桌面和桌腿可以抵御脚步带来的震动,

nearby elevators, and opening or closing doors. |Lift doors|||||Elevator doors ліфти поблизу, двері, що відкриваються чи зачиняються. 附近的电梯,以及打开或关闭门。

The cylinder is a vacuum chamber, 气缸是一个真空室,

devoid of all the gases in air. frei von|||||| ||||airborne substances|| fri|||||| |の||||| 不含空气中的所有气体。

Inside the vacuum chamber is a smaller, Усередині вакуумної камери є менший,

extremely cold compartment, reachable by tiny laser beams. ||Freezing section|Accessible by||||narrow light rays ||fack||||| надзвичайно холодний відсік, доступний крихітними лазерними променями. 极冷隔间,微型激光束可到达。

Inside are ultra-sensitive particles that make up a quantum computer. 里面是构成量子计算机的超灵敏粒子。

So what makes these particles worth the effort? Отже, чому ці частинки варті зусиль?

In theory, quantum computers could outstrip the computational limits |||||übertreffen||| |||||exceed||processing capabilities| |||||超える||| |||||||beräknings-| Теоретично квантові комп’ютери можуть вийти за межі обчислень 理论上,量子计算机可以超越计算极限

of classical computers. |traditional|

Classical computers process data in the form of bits.

Each bit can switch between two states labeled zero and one.

A quantum computer uses something called a qubit, |||||||Qubit |||||||quantum bit |||||||量子ビット Een kwantumcomputer gebruikt iets dat een qubit wordt genoemd, Квантовий комп’ютер використовує те, що називається кубітом,

which can switch between zero, one, and what's called a superposition. ||||||||||simultaneous states combination 它可以在零、一和所谓的叠加之间切换。

While the qubit is in its superposition, ||||||superposition ||||||重ね合わせ

it has a lot more information than one or zero.

You can think of these positions as points on a sphere: ||||||||||Kugel 你可以将这些位置视为球体上的点:

the north and south poles of the sphere represent one and zero.

A bit can only switch between these two poles,

but when a qubit is in its superposition, |||qubit||||

it can be at any point on the sphere. 它可以位于球体上的任意一点。

We can't locate it exactly— 我们无法准确定位它——

the moment we read it, the qubit resolves into a zero or a one. |||||||collapses into|||||| у той момент, коли ми його читаємо, кубіт перетворюється на нуль або одиницю. 当我们读取它时,量子位就解析为零或一。

But even though we can't observe the qubit in its superposition, |||||観測する|||||

we can manipulate it to perform particular operations while in this state. ||control or adjust||||||||| 我们可以操纵它,在这种状态下执行特定的操作。

So as a problem grows more complicated, 因此,随着问题变得越来越复杂,

a classical computer needs correspondingly more bits to solve it, ||||proportionally more bits||||| ||||motsvarande||||| класичному комп’ютеру потрібно відповідно більше бітів для її вирішення, 经典计算机需要更多位来解决它,

while a quantum computer will theoretically be able to handle

more and more complicated problems

without requiring as many more qubits as a classical computer would need bits. |||||quantum information units|||||||

The unique properties of quantum computers

result from the behavior of atomic and subatomic particles. 是由原子和亚原子粒子的行为引起的。

These particles have quantum states,

which correspond to the state of the qubit. які відповідають стану кубіта. 它与量子比特的状态相对应。

Quantum states are incredibly fragile, 量子态极其脆弱,

easily destroyed by temperature and pressure fluctuations, легко руйнується при перепадах температури і тиску,

stray electromagnetic fields, strösa|| розсіяні електромагнітні поля, 杂散电磁场,

and collisions with nearby particles. 以及与附近粒子的碰撞。

That's why quantum computers need such an elaborate set up. |||||||complex and detailed|| Ось чому квантові комп’ютери потребують такого складного налаштування. 这就是为什么量子计算机需要如此复杂的设置。

It's also why, for now, 这也是为什么现在

the power of quantum computers remains largely theoretical. 量子计算机的能力很大程度上仍停留在理论上。

So far, we can only control a few qubits in the same place at the same time. 到目前为止,我们只能同时控制同一地点的几个量子比特。

There are two key components involved ||||key parts| 其中涉及两个关键部分

in managing these fickle quantum states effectively: |||wechselhaften||| |||unstable or unpredictable||| |||flickande|||

the types of particles a quantum computer uses, 量子计算机使用的粒子类型,

and how it manipulates those particles. |||controls|| 以及它如何操纵这些粒子。

For now, there are two leading approaches: 目前,有两种主要方法:

trapped ions and superconducting qubits. |charged atomic particles||zero-resistance conducting| fångade|joner||superledande| 捕获离子和超导量子比特。

A trapped ion quantum computer uses ions as its particles ||Charged atomic particle|||||||

and manipulates them with lasers. ||||focused light beams

The ions are housed in a trap made of electrical fields. Іони знаходяться в пастці, створеній електричними полями. 离子被安置在由电场构成的陷阱中。

Inputs from the lasers tell the ions what operation to make Laser signals||||||||||

by causing the qubit state to rotate on the sphere. ||||||spin||| 通过使量子比特状态在球体上旋转。

To use a simplified example, |||made simple|

the lasers could input the question:

what are the prime factors of 15? які прості множники числа 15? 15 的质因数有哪些?

In response, the ions may release photons— 作为回应,离子可能会释放光子——

the state of the qubit determines whether the ion emits photons |||||decides||||releases| стан кубіта визначає, чи випромінює іон фотони

and how many photons it emits.

An imaging system collects these photons and processes them to reveal the answer: |capturing visual data||gathers||||||||| 成像系统收集这些光子并对其进行处理以揭示答案:

3 and 5.

Superconducting qubit quantum computers do the same thing in a different way: Надпровідні кубітні квантові комп’ютери роблять те саме іншим способом:

using a chip with electrical circuits instead of an ion trap. |||||Schaltkreise||||| |||||electronic pathways||||| 使用带有电路的芯片代替离子阱。

The states of each electrical circuit translate to the state of the qubit. |||||Schaltkreis||||||| ||||||変換される|||||| 每个电路的状态转换为量子位的状态。

They can be manipulated with electrical inputs in the form of microwaves. |||||||||||Mikrowellenstrahlung |||||||||||high-frequency signals 它们可以通过微波形式的电输入进行操纵。

So: the qubits come from either ions or electrical circuits,

acted on by either lasers or microwaves. Influenced||||||

Each approach has advantages and disadvantages. |||||drawbacks

Ions can be manipulated very precisely,

and they last a long time,

but as more ions are added to a trap,

it becomes increasingly difficult to control each with precision. ||||||||精度

We can't currently contain enough ions in a trap to make advanced computations, ||||||||||||complex calculations |||保持する|||||||||

but one possible solution might be to connect many smaller traps

that communicate with each other via photons

rather than trying to create one big trap.

Superconducting circuits, meanwhile, make operations much faster than trapped ions,

and it's easier to scale up the number of circuits in a computer

than the number of ions.

But the circuits are also more fragile,

and have a shorter overall lifespan. |||||life expectancy і мають менший загальний термін служби.

And as quantum computers advance, ||||make progress

they will still be subject to the environmental constraints ||||||||Umweltauflagen вони все ще підлягатимуть екологічним обмеженням 它们仍将受到环境限制

needed to preserve quantum states. ||erhalten|| ||maintain|| 需要保存量子态。

But in spite of all these obstacles, ||||||challenges

we've already succeeded at making computations ||achieved success in||| ми вже досягли успіху в обчисленнях 我们已经成功进行了计算

in a realm we can't enter or even observe. 在一个我们无法进入甚至观察的领域中。