×

Nous utilisons des cookies pour rendre LingQ meilleur. En visitant le site vous acceptez nos Politique des cookies.

image

Science in English, 02. Math isn't hard, it's a language Part 1

02. Math isn't hard, it's a language Part 1

26% on the nation's report card, that's the percentage of U.S. 12th graders who are proficient in Math.

In America, we pride ourselves as being an exceptional country.

But does 26% sound exceptional to you? Raise your hand if you think as a country we need to do way better than this. I'm with you. We all need Math, but why are so many kids confused by it? Is it because only 26% of people are hardwired for Math, while 74% are not? After working with thousands of kids, I can tell you, this isn't the case at all. Kids don't understand Math because we've been teaching it as a dehumanized subject. But if we make Math human again, it will start to make sense again. You're probably wondering: "How was Math ever human in the first place?" So, think about it.

(Laughter)

Math is a human language, just like English, Spanish or Chinese, because it allows people to communicate with each other. Even in ancient times, people needed the language of Math to conduct trade, to build monuments, and to measure the land for farming.

This idea of Math as a language isn't exactly new. A great philosopher once said:

"The laws of nature are written in the language of mathematics." So you see? Even Galileo agrees with me.

(Laughter)

But somewhere along the line, we've taken this language of math, which is about the real world around us, and we've abstracted it beyond recognition. And that's why kids are confused. Let me show you what I mean. Read this 3rd grade California Math Standard and see if it would make sense to an eight year-old.

"Understand a fraction 1/b as the quantity formed by 1 part when a whole is partitioned into b equal parts." Understand the fraction a/b as the quantity formed by a parts of size 1/b.

And if you gave this description to an 8 year-old, you'd probably get a reaction... like this. To a Math expert, this standard makes sense, But to a kid, it's absolute torture. I chose this example specifically because fractions are foundational to algebra, trigonometry and even calculus. So if kids don't understand fractions in elementary and middle school, they have a tough road ahead of them in high-school. But is there a way to make fractions simple and easy for kids to understand? Yes! Just remember that Math is a language and use that to your advantage.

For example, when I teach 5th graders how to add and subtract fractions, I start with the apples + apples lesson. First I ask, "What's 1 apple plus 1 apple?" And kids will often say 2, which is partially correct.

Have them include the words as well since math is a language. So it's not just 2, it's 2 apples. Next is 3 pencils plus 2 pencils. You all know that pencils + pencils give you pencils, so everyone, how many pencils?

Audience: 5 pencils.

5 pencils is right.

And the key is you included the words. I tried this lesson with my 5-year-old niece once. After she added pencils and pencils, I asked her,

"What's 4 billion plus 1 billion?" And my aunt overheard this and she scolded me and said:

"Are you crazy? She's in kindergarten! How's she supposed to know 4 billion plus 1 billion?!" (Laughter)

Undaunted, my niece finishes counting, looks up and says: "5 billion?" And I said: "That is right, it is 5 billion." My aunt just shook her head and laughed because she did not expect that from a 5-year-old.

But all you have to do is take a language approach and Math becomes intuitive and easy to understand. Then I asked her a question that kindergartners are definitely not supposed to know:

"What's one third plus one third?" And immediately she answered: "2 thirds". So if you're wondering how could she possibly know that when she doesn't know about numerators and denominators yet? You see, she wasn't thinking about numerators and denominators. She thought of the problem this way. And she used 1 apple + 1 apple as her analogy to understand 1 third plus 1 third. So if even a kidergartner can add fractions, you better believe that every 5th grader can do it as well.

(Applause)

Just for fun, I asked her a high-school algebra question:

What's 7 x² plus 2 x²? And this little 5-year-old girl correctly answered, 9 x².

And she didn't need any exponent rules to figure that out. So when people say that we are either hardwired for math or not, it's not true. Math is a human language, so we all have the ability to understand it.

(Laughter)

Learn languages from TV shows, movies, news, articles and more! Try LingQ for FREE

02. Math isn't hard, it's a language Part 1 02. Mathematik ist nicht schwer, sie ist eine Sprache Teil 1 02. Las matemáticas no son difíciles, son un lenguaje Parte 1 02. Les mathématiques ne sont pas difficiles, c'est une langue Partie 1 02.数学は難しくない。 02. A matemática não é difícil, é uma linguagem Parte 1 02. Matematik är inte svårt, det är ett språk Del 1 02. Matematik zor değildir, bir dildir Bölüm 1 02. Математика - це не складно, це мова Частина 1 02. 数学并不难,它是一门语言 第 1 部分 02.数学并不难,它是一种语言 第 1 部分

26% on the nation's report card, that's the percentage of U.S. |||||||proportion||| 26% en la boleta de calificaciones de la nación, ese es el porcentaje de EE. UU. 26% в национальной табели о рангах - таков процент американских школьников. 国家成绩单上的26%,即美国的百分比 12th graders who are proficient in Math. |Schüler|||kompetent in Mathe|| ||||skilled in Math|| Estudiantes de 12º grado que dominan las matemáticas. 精通数学的12年级学生。

In America, we pride ourselves as being an exceptional country. En Estados Unidos, nos enorgullecemos de ser un país excepcional. Америка гордится тем, что является исключительной страной.

But does 26% sound exceptional to you? |||excepcional|| Pero, ¿le parece excepcional un 26%? 但是26%听起来对您来说异常吗? Raise your hand if you think as a country we need to do way better than this. Que levante la mano quien piense que como país tenemos que hacerlo mucho mejor que esto. 如果您认为作为一个国家我们需要做得更好,请举手。 I'm with you. 我和你在一起。 We all need Math, but why are so many kids confused by it? Todos necesitamos las matemáticas, pero ¿por qué confunden a tantos niños? 我们都需要数学,但为什么这么多孩子对此感到困惑? Is it because only 26% of people are hardwired for Math, while 74% are not? |||||||innately skilled||||| ¿Será porque sólo el 26% de las personas están predispuestas a las matemáticas, mientras que el 74% no? Est-ce parce que seulement 26% des gens sont câblés pour les mathématiques, alors que 74% ne le sont pas ? 是因为只有 26% 的人天生擅长数学,而 74% 的人则不然? After working with thousands of kids, I can tell you, this isn't the case at all. Después de trabajar con miles de niños, puedo decirte que no es así en absoluto. 在与数千名孩子一起工作后,我可以告诉你,事实并非如此。 Kids don't understand Math because we've been teaching it as a dehumanized subject. |||||||||||entmenschlicht| |||||||||||dehumanized| |||||||||||deshumanizada| Los niños no entienden las Matemáticas porque las hemos enseñado como una asignatura deshumanizada. But if we make Math human again, it will start to make sense again. Pero si hacemos que Math vuelva a ser humano, empezará a tener sentido de nuevo. 但如果我们再次让数学变得人类化,它就会再次变得有意义。 You're probably wondering: "How was Math ever human in the first place?" ||||||||regarded as human||| Probablemente se pregunte: "¿Cómo es posible que Math fuera humano?". 你可能想知道:“数学最初是如何成为人类的?” So, think about it.

(Laughter)

Math is a human language, just like English, Spanish or Chinese, because it allows people to communicate with each other. Las matemáticas son un lenguaje humano, como el inglés, el español o el chino, porque permiten a las personas comunicarse entre sí. Even in ancient times, people needed the language of Math to conduct trade, to build monuments, and to measure the land for farming. |||||||||||führen||||||||||| |||||||||||||||historical structures||||||| |||||||||||||||monumentos|||medir||||

This idea of Math as a language isn't exactly new. 将数学作为一种语言的想法并不新鲜。 A great philosopher once said: 一位伟大的哲学家曾经说过:

"The laws of nature are written in the language of mathematics." “自然法则是用数学语言写成的。” So you see? Even Galileo agrees with me. ||stimmt zu|| ||está de acuerdo||

(Laughter)

But somewhere along the line, we've taken this language of math, which is about the real world around us, and we've abstracted it beyond recognition. |||||||||||||||||||||abstracted||| |||||||||||||||||||||abstraído||más allá|más allá del reconocimiento Pero en algún momento hemos tomado este lenguaje matemático, que trata del mundo real que nos rodea, y lo hemos abstraído hasta hacerlo irreconocible. Mais quelque part le long de la ligne, nous avons pris ce langage mathématique, qui concerne le monde réel qui nous entoure, et nous l'avons abstrait au-delà de la reconnaissance. Но где-то мы взяли этот язык математики, который связан с реальным миром вокруг нас, и абстрагировали его до неузнаваемости. 但在这个过程中,我们已经采用了这种关于我们周围现实世界的数学语言,并且我们已经将它抽象得面目全非。 And that's why kids are confused. Let me show you what I mean. Read this 3rd grade California Math Standard and see if it would make sense to an eight year-old. Lee este Estándar de Matemáticas de California de 3er grado y comprueba si tendría sentido para un niño de ocho años. Lisez cette norme de mathématiques californienne de 3e année et voyez si cela aurait du sens pour un enfant de huit ans. 阅读这份三年级加州数学标准,看看它对八岁的孩子是否有意义。

"Understand a fraction 1/b as the quantity formed by 1 part when a whole is partitioned into b equal parts." ||||||||||||||geteilt|||| ||||||||||||||divided|||| ||fracción||||cantidad||||||||dividido|||| "Entiende por fracción 1/b la cantidad formada por 1 parte cuando un todo se divide en b partes iguales". « Comprendre une fraction 1/b comme la quantité formée par 1 partie lorsqu'un tout est divisé en b parties égales. » “将分数 1/b 理解为当整体被分成 b 个相等的部分时由 1 部分形成的数量。” Understand the fraction a/b as the quantity formed by a parts of size 1/b. ||fracción|||||||||||| Entiende la fracción a/b como la cantidad formada por a partes de tamaño 1/b. 将分数 a/b 理解为由尺寸为 1/b 的部分形成的数量。

And if you gave this description to an 8 year-old, you'd probably get a reaction... like this. Y si le dieras esta descripción a un niño de 8 años, probablemente obtendrías una reacción... como esta. 如果你把这个描述给一个 8 岁的孩子,你可能会得到这样的反应……就像这样。 To a Math expert, this standard makes sense, But to a kid, it's absolute torture. ||||||||||||||extreme difficulty |||||estándar|||||||||tortura absoluta Para un experto en matemáticas, esta norma tiene sentido, pero para un niño es una tortura absoluta. 对于一个数学专家来说,这个标准是有道理的,但对于一个孩子来说,这绝对是一种折磨。 I chose this example specifically because fractions are foundational to algebra, trigonometry and even calculus. |||||||||||Trigonometrie|||Analysis |||||||||||study of angles|||advanced mathematical study |||||||||||trigonometría|||cálculo He elegido este ejemplo porque las fracciones son fundamentales para el álgebra, la trigonometría e incluso el cálculo. 我之所以选择这个示例,是因为分数是代数,三角函数甚至微积分的基础。 So if kids don't understand fractions in elementary and middle school, they have a tough road ahead of them in high-school. ||||||||||||||tough||||||| ||||||||||||||difícil|camino difícil|por delante||||| Así que si los niños no entienden las fracciones en primaria y secundaria, les espera un duro camino en el instituto. Donc, si les enfants ne comprennent pas les fractions à l'école primaire et intermédiaire, ils ont une route difficile devant eux au lycée. Так что если дети не понимают дробей в начальной и средней школе, в старших классах их ждет нелегкий путь. But is there a way to make fractions simple and easy for kids to understand? |||||||fracciones||||||| Pero, ¿hay alguna forma de hacer que las fracciones sean sencillas y fáciles de entender para los niños? Yes! Just remember that Math is a language and use that to your advantage. Recuerda que las matemáticas son un lenguaje y utilízalo a tu favor.

For example, when I teach 5th graders how to add and subtract fractions, I start with the apples + apples lesson. |||||||||||subtrahieren|||||||| |||||||||||restar|||||||| Por ejemplo, cuando enseño a los alumnos de 5º a sumar y restar fracciones, empiezo con la lección manzanas + manzanas. Par exemple, lorsque j'enseigne aux élèves de 5e comment additionner et soustraire des fractions, je commence par la leçon pommes + pommes. First I ask, "What's 1 apple plus 1 apple?" D'abord, je demande : « Qu'est-ce que 1 pomme plus 1 pomme ? » And kids will often say 2, which is partially correct. |||||||parcialmente| Y los niños suelen decir 2, que es parcialmente correcto. Et les enfants diront souvent 2, ce qui est partiellement correct.

Have them include the words as well since math is a language. Pídeles que incluyan también las palabras, ya que las matemáticas son un lenguaje. Faites-leur également inclure les mots puisque les mathématiques sont un langage. So it's not just 2, it's 2 apples. Donc ce n'est pas seulement 2, c'est 2 pommes. Next is 3 pencils plus 2 pencils. ||lápices||lápices Vient ensuite 3 crayons plus 2 crayons. You all know that pencils + pencils give you pencils, so everyone, how many pencils? ||||Bleistifte||||||||| Todos sabéis que lápices + lápices dan lápices, así que todos, ¿cuántos lápices? Vous savez tous que crayons + crayons vous donnent des crayons, alors tout le monde, combien de crayons ?

Audience: 5 pencils.

5 pencils is right.

And the key is you included the words. I tried this lesson with my 5-year-old niece once. After she added pencils and pencils, I asked her, ||agregó lápices||||||

"What's 4 billion plus 1 billion?" "¿Qué son 4.000 millones más 1.000 millones?" « Qu'est-ce que 4 milliards plus 1 milliard ? » And my aunt overheard this and she scolded me and said: |||überhörte||||schimpfte||| |||accidentally heard||||scolded||| |||oyó por casualidad||||||| Y mi tía escuchó esto y me regañó y dijo: Et ma tante a entendu cela et elle m'a grondé et a dit :

"Are you crazy? She's in kindergarten! ||kindergarten ¡Está en la guardería! How's she supposed to know 4 billion plus 1 billion?!" ¡¿Cómo se supone que va a saber 4.000 millones más 1.000 millones?!". Comment est-elle censée savoir 4 milliards plus 1 milliard ?!" (Laughter)

Undaunted, my niece finishes counting, looks up and says: "5 billion?" Unfazed||||||||| sin inmutarse||sobrina||||||| Imperturbable, ma nièce finit de compter, lève les yeux et dit : « 5 milliards ? » And I said: "That is right, it is 5 billion." Y yo dije: "Así es, son 5.000 millones". My aunt just shook her head and laughed because she did not expect that from a 5-year-old. |||movió|||||||||||||| Mi tía se limitó a sacudir la cabeza y reírse porque no esperaba eso de un niño de 5 años.

But all you have to do is take a language approach and Math becomes intuitive and easy to understand. Pero basta con adoptar un enfoque lingüístico para que las Matemáticas se vuelvan intuitivas y fáciles de entender. Mais tout ce que vous avez à faire est d'adopter une approche linguistique et les mathématiques deviennent intuitives et faciles à comprendre. Then I asked her a question that kindergartners are definitely not supposed to know: |||||||Kindergartenkinder|||||| |||||||kindergartners|||||| |||||||los niños de jardín|||||| Entonces le hice una pregunta que los niños de guardería no deberían saber: Ensuite, je lui ai posé une question que les élèves de maternelle ne sont certainement pas censés savoir :

"What's one third plus one third?" "¿Qué es un tercio más un tercio?" And immediately she answered: "2 thirds". So if you're wondering how could she possibly know that when she doesn't know about numerators and denominators yet? |||||||||||||||Zähler||Nenner| |||||||||||||||numerators||denominators| |||preguntándote||||||||||||numeradores||denominadores| Así que si te estás preguntando cómo es posible que lo sepa si todavía no sabe nada de numeradores y denominadores... Donc, si vous vous demandez comment pourrait-elle le savoir alors qu'elle ne connaît pas encore les numérateurs et les dénominateurs ? You see, she wasn't thinking about numerators and denominators. Verás, no estaba pensando en numeradores y denominadores. She thought of the problem this way. And she used 1 apple + 1 apple as her analogy to understand 1 third plus 1 third. |||||||analogía||||| So if even a kidergartner can add fractions, you better believe that every 5th grader can do it as well. ||||Kindergartenkind||||||||||||||| ||||kindergartener||||||||||||||| ||||niño de jardín||||||||||||||| Así que si hasta un kidergartner puede sumar fracciones, es mejor que creas que todos los niños de 5º grado también pueden hacerlo. Так что если даже Кидергартнер может складывать дроби, то уж поверьте, что это может сделать и каждый пятиклассник.

(Applause) Audience claps

Just for fun, I asked her a high-school algebra question: Sólo por diversión, le hice una pregunta de álgebra de bachillerato:

What's 7 x² plus 2 x²? And this little 5-year-old girl correctly answered, 9 x².

And she didn't need any exponent rules to figure that out. |||||Exponenten||||| |||||mathematical principles||||| |||||reglas de exponentes||||| So when people say that we are either hardwired for math or not, it's not true. Así que cuando la gente dice que estamos predispuestos a las matemáticas o no, no es cierto. Donc, quand les gens disent que nous sommes câblés pour les mathématiques ou non, ce n'est pas vrai. Math is a human language, so we all have the ability to understand it. Las matemáticas son un lenguaje humano, por lo que todos tenemos la capacidad de entenderlas.

(Laughter)