×

Utilizziamo i cookies per contribuire a migliorare LingQ. Visitando il sito, acconsenti alla nostra politica dei cookie.

image

TED Talks, Regina Dugan: From mach-20 glider to humming bird drone

Regina Dugan: From mach-20 glider to humming bird drone

You should be nice to nerds.

In fact, I'd go so far as to say, if you don't already have a nerd in your life, you should get one. I'm just saying. Scientists and engineers change the world. I'd like to tell you about a magical place called DARPA where scientists and engineers defy the impossible and refuse to fear failure. Now these two ideas are connected more than you may realize, because when you remove the fear of failure, impossible things suddenly become possible. If you want to know how, ask yourself this question: What would you attempt to do if you knew you could not fail?

If you really ask yourself this question, you can't help but feel uncomfortable. I feel a little uncomfortable. Because when you ask it, you begin to understand how the fear of failure constrains you, how it keeps us from attempting great things, and life gets dull, amazing things stop happening. Sure, good things happen, but amazing things stop happening. Now I should be clear, I'm not encouraging failure, I'm discouraging fear of failure.

Because it's not failure itself that constrains us. The path to truly new, never-been-done-before things always has failure along the way. We're tested. And in part, that testing feels an appropriate part of achieving something great. Clemenceau said, "Life gets interesting when we fail, because it's a sign that we've surpassed ourselves. In 1895, Lord Kelvin declared that heavier-than-air flying machines were impossible.

In October of 1903, the prevailing opinion of expert aerodynamicists was that maybe in 10 million years we could build an aircraft that would fly. And two months later on December 17th, Orville Wright powered the first airplane across a beach in North Carolina. The flight lasted 12 seconds and covered 120 feet. That was 1903. One year later, the next declarations of impossibilities began.

Ferdinand Foch, a French army general credited with having one of the most original and subtle minds in the French army, said, "Airplanes are interesting toys, but of no military value." 40 years later, aero experts coined the term transonic. They debated, should it have one S or two? You see, they were having trouble in this flight regime, and it wasn't at all clear that we could fly faster than the speed of sound. In 1947, there was no wind tunnel data beyond Mach 0.85. And yet, on Tuesday, October 14th, 1947, Chuck Yeager climbed into the cockpit of his Bell X-1 and he flew towards an unknown possibility, and in so doing, he became the first pilot to fly faster than the speed of sound. Six of eight Atlas rockets blew up on the pad. After 11 complete mission failures, we got our first images from space. And on that first flight we got more data than in all U-2 missions combined. It took a lot of failures to get there. Since we took to the sky, we have wanted to fly faster and farther.

And to do so, we've had to believe in impossible things. And we've had to refuse to fear failure. That's still true today. Today, we don't talk about flying transonically, or even supersonically, we talk about flying hypersonically -- not Mach 2 or Mach 3, Mach 20. At Mach 20, we can fly from New York to Long Beach in 11 minutes and 20 seconds. At that speed, the surface of the airfoil is the temperature of molten steel -- 3,500 degrees Fahrenheit -- like a blast furnace. We are essentially burning the airfoil as we fly it. And we are flying it, or trying to. DARPA's hypersonic test vehicle is the fastest maneuvering aircraft ever built.

It's boosted to near-space atop a Minotaur IV rocket. Now the Minotaur IV has too much impulse, so we have to bleed it off by flying the rocket at an 89 degree angle of attack for portions of the trajectory. That's an unnatural act for a rocket. The third stage has a camera. We call it rocketcam. And it's pointed at the hypersonic glider. This is the actual rocketcam footage from flight one. Now to conceal the shape, we changed the aspect ratio a little bit. But this is what it looks like from the third stage of the rocket looking at the unmanned glider as it heads into the atmosphere back towards Earth. We've flown twice.

In the first flight, no aerodynamic control of the vehicle. But we collected more hypersonic flight data than in 30 years of ground-based testing combined. And in the second flight, three minutes of fully-controlled, aerodynamic flight at Mach 20. We must fly again, because amazing, never-been-done-before things require that you fly. You can't learn to fly at Mach 20 unless you fly. And while there's no substitute for speed, maneuverability is a very close second. If a Mach 20 glider takes 11 minutes and 20 seconds to get from New York to Long Beach, a hummingbird would take, well, days.

You see, hummingbirds are not hypersonic, but they are maneuverable. In fact, the hummingbird is the only bird that can fly backwards. It can fly up, down, forwards, backwards, even upside-down. And so if we wanted to fly in this room or places where humans can't go, we'd need an aircraft small enough and maneuverable enough to do so. This is a hummingbird drone.

It can fly in all directions, even backwards. It can hover and rotate. This prototype aircraft is equipped with a video camera. It weighs less than one AA battery. It does not eat nectar. In 2008, it flew for a whopping 20 seconds, a year later, two minutes, then six, eventually 11. Many prototypes crashed -- many. But there's no way to learn to fly like a hummingbird unless you fly. (Applause) It's beautiful, isn't it. Wow. It's great. Matt is the first ever hummingbird pilot. (Applause)

Failure is part of creating new and amazing things.

We cannot both fear failure and make amazing new things -- like a robot with the stability of a dog on rough terrain, or maybe even ice; a robot that can run like a cheetah, or climb stairs like a human with the occasional clumsiness of a human. Or perhaps, Spider Man will one day be Gecko Man. A gecko can support its entire body weight with one toe. One square millimeter of a gecko's footpad has 14,000 hair-like structures called setae. They are used to help it grip to surfaces using intermolecular forces. Today we can manufacture structures that mimic the hairs of a gecko's foot.

The result, a four-by-four-inch artificial nano-gecko adhesive. can support a static load of 660 pounds. That's enough to stick six 42-inch plasma TV's to your wall, no nails. So much for Velcro, right? And it's not just passive structures, it's entire machines.

This is a spider mite. It's one millimeter long, but it looks like Godzilla next to these micromachines. In the world of Godzilla spider mites, we can make millions of mirrors, each one-fifth the diameter of a human hair, moving at hundreds of thousands of times per second to make large screen displays, so that we can watch movies like "Godzilla" in high-def. And if we can build machines at that scale, what about Eiffel Tower-like trusses at the microscale?

Today we are making metals that are lighter than Styrofoam, so light they can sit atop a dandelion puff and be blown away with a wisp of air -- so light that you can make a car that two people can lift, but so strong that it has the crash-worthiness of an SUV. From the smallest wisp of air to the powerful forces of nature's storms.

There are 44 lightning strikes per second around the globe. Each lightning bolt heats the air to 44,000 degrees Fahrenheit -- hotter than the surface of the Sun. What if we could use these electromagnetic pulses as beacons, beacons in a moving network of powerful transmitters? Experiments suggest that lightning could be the next GPS. Electrical pulses form the thoughts in our brains.

Using a grid the size of your thumb, with 32 electrodes on the surface of his brain, Tim uses his thoughts to control an advanced prosthetic arm. And his thoughts made him reach for Katie. This is the first time a human has controlled a robot with thought alone. And it is the first time that Tim has held Katie's hand in seven years. That moment mattered to Tim and Katie, and this green goo may someday matter to you. This green goo is perhaps the vaccine that could save your life. It was made in tobacco plants. Tobacco plants can make millions of doses of vaccine in weeks instead of months, and it might just be the first healthy use of tobacco ever. And if it seems far-fetched that tobacco plants could make people healthy, what about gamers that could solve problems that experts can't solve?

Last September, the gamers of Foldit solved the three-dimensional structure of the retroviral protease that contributes to AIDS in rhesus monkeys. Now understanding this structure is very important for developing treatments. For 15 years, it was unsolved in the scientific community. The gamers of Foldit solved it in 15 days. Now they were able to do so by working together. They were able to work together because they're connected by the Internet. And others, also connected to the Internet, used it as an instrument of democracy. And together they changed the fate of their nation. The Internet is home to two billion people, or 30 percent of the world's population.

It allows us to contribute and to be heard as individuals. It allows us to amplify our voices and our power as a group. But it too had humble beginnings. In 1969, the internet was but a dream, a few sketches on a piece of paper. And then on October 29th, the first packet-switched message was sent from UCLA to SRI. The first two letters of the word "Login," that's all that made it through -- an L and an O -- and then a buffer overflow crashed the system. (Laughter) Two letters, an L and an O, now a worldwide force. So who are these scientists and engineers at a magical place called DARPA?

They are nerds, and they are heroes among us. They challenge existing perspectives at the edges of science and under the most demanding of conditions. They remind us that we can change the world if we defy the impossible and we refuse to fear failure. They remind us that we all have nerd power. Sometimes we just forget. You see, there was a time when you weren't afraid of failure, when you were a great artist or a great dancer and you could sing, you were good at math, you could build things, you were an astronaut, an adventurer, Jacques Cousteau, you could jump higher, run faster, kick harder than anyone.

You believed in impossible things and you were fearless. You were totally and completely in touch with your inner superhero. Scientists and engineers can indeed change the world. So can you. You were born to. So go ahead, ask yourself, what would you attempt to do if you knew you could not fail? Now I want to say, this is not easy.

It's hard to hold onto this feeling, really hard. I guess in some way, I sort of believe it's supposed to be hard. Doubt and fear always creep in. We think someone else, someone smarter than us, someone more capable, someone with more resources will solve that problem. But there isn't anyone else; there's just you. And if we're lucky, in that moment, someone steps into that doubt and fear, takes a hand and says, "Let me help you believe. Jason Harley did that for me.

Jason started at DARPA on March 18th, 2010. He was with our transportation team. I saw Jason nearly every day, sometimes twice a day. And more so than most, he saw the highs and the lows, the celebrations and the disappointments. And on one particularly dark day for me, Jason sat down and he wrote an email. He was encouraging, but firm. And when he hit send, he probably didn't realize what a difference it would make. It mattered to me. In that moment and still today when I doubt, when I feel afraid, when I need to reconnect with that feeling, I remember his words, they were so powerful. Text: "There is only time enough to iron your cape and back to the skies for you.

♫ Superhero, superhero.

♫ ♫ Superhero, superhero. ♫ ♫ Superhero, superhero. ♫ ♫ Superhero, superhero. ♫ ♫ Superhero, superhero. Voice: Because that's what being a superhero is all about.

RD: "There is only time enough to iron your cape and back to the skies for you.

And remember, be nice to nerds. (Applause) Thank you. Thank you. (Applause)

Chris Anderson: Regina, thank you.

I have a couple of questions. So that glider of yours, the Mach 20 glider, the first one, no control, it ended up in the Pacific I think somewhere. RD: Yeah, yeah.

It did. (CA: What happened on that second flight?) Yeah, it also went into the Pacific. (CA: But this time under control?) We didn't fly it into the Pacific. No, there are multiple portions of the trajectory that are demanding in terms of really flying at that speed. And so in the second flight, we were able to get three minutes of fully aerodynamic control of the vehicle before we lost it. CA: I imagine you're not planning to open up to passenger service from New York to Long Beach anytime soon.

RD: It might be a little warm.

CA: What do you picture that glider being used for?

RD: Well our responsibility is to develop the technology for this.

How it's ultimately used will be determined by the military. Now the purpose of the vehicle though, the purpose of the technology, is to be able to reach anywhere in the world in less than 60 minutes. CA: And to carry a payload of more than a few pounds?

(RD: Yeah.) Like what's the payload it could carry? RD: Well I don't think we ultimately know what it will be, right.

We've got to fly it first. CA: But not necessarily just a camera?

RD: No, not necessarily just a camera.

CA: It's amazing.

The hummingbird? RD: Yeah?

CA: I'm curious, you started your beautiful sequence on flight with a plane kind of trying to flap its wings and failing horribly, and there haven't been that many planes built since that flap wings.

Why did we think that this was the time to go biomimicry and copy a hummingbird? Isn't that a very expensive solution for a small maneuverable flying object? RD: So I mean, in part, we wondered if it was possible to do it.

And you have to revisit these questions over time. The folks at AeroVironment tried 300 or more different wing designs, 12 different forms of the avionics. It took them 10 full prototypes to get something that would actually fly. But there's something really interesting about a flying machine that looks like something you'd recognize. So we often talk about stealth as a means for avoiding any type of sensing, but when things looks just natural, you also don't see them. CA: Ah.

So it's not necessarily just the performance. It's partly the look. (RD: Sure.) It's actually, "Look at that cute hummingbird flying into my headquarters." (Laughter) Because I think, as well as the awe of looking at that, I'm sure some people here are thinking, technology catches up so quick, how long is it before some crazed geek with a little remote control flies one through a window of the White House? I mean, do you worry about the Pandora's box issue here? RD: Well look, our singular mission is the creation and prevention of strategic surprise.

That's what we do. It would be inconceivable for us to do that work if we didn't make people excited and uncomfortable with the things that we do at the same time. It's just the nature of what we do. Now our responsibility is to push that edge. And we have to be, of course, mindful and responsible of how the technology is developed and ultimately used, but we can't simply close our eyes and pretend that it isn't advancing; it's advancing. CA: I mean, you're clearly a really inspiring leader.

And you persuade people to go to these great feats of invention, but at a personal level, in a way I can't imagine doing your job. Do you wake up in the night sometimes, just asking questions about the possibly unintended consequences of your team's brilliance? RD: Sure.

I think you couldn't be human if you didn't ask those questions. CA: How do you answer them?

RD: Well I don't always have answers for them, right.

I think that we learn as time goes on. My job is one of the most exhilarating jobs you could have. I work with some of the most amazing people. And with that exhilaration, comes a really deep sense of responsibility. And so you have on the one hand this tremendous lift of what's possible and this tremendous seriousness of what it means. CA: Regina, that was jaw-dropping, as they say.

Thank you so much for coming to TED. (RD: Thank you. (Applause)

Learn languages from TV shows, movies, news, articles and more! Try LingQ for FREE

Regina Dugan: From mach-20 glider to humming bird drone Regina Dugan: De planador mach-20 a drone de pássaro zumbidor

You should be nice to nerds.

In fact, I’d go so far as to say, if you don’t already have a nerd in your life, you should get one. I’m just saying. Scientists and engineers change the world. I’d like to tell you about a magical place called DARPA where scientists and engineers defy the impossible and refuse to fear failure. Eu gostaria de falar sobre um lugar mágico chamado DARPA, onde cientistas e engenheiros desafiam o impossível e se recusam a temer o fracasso. Now these two ideas are connected more than you may realize, because when you remove the fear of failure, impossible things suddenly become possible. If you want to know how, ask yourself this question: What would you attempt to do if you knew you could not fail? Se você quiser saber como, faça a si mesmo esta pergunta: O que você tentaria fazer se soubesse que não poderia falhar?

If you really ask yourself this question, you can’t help but feel uncomfortable. I feel a little uncomfortable. Because when you ask it, you begin to understand how the fear of failure constrains you, how it keeps us from attempting great things, and life gets dull, amazing things stop happening. Sure, good things happen, but amazing things stop happening. Now I should be clear, I’m not encouraging failure, I’m discouraging fear of failure.

Because it’s not failure itself that constrains us. The path to truly new, never-been-done-before things always has failure along the way. O caminho para coisas verdadeiramente novas e nunca antes realizadas sempre falha ao longo do caminho. We’re tested. And in part, that testing feels an appropriate part of achieving something great. E, em parte, esse teste é uma parte apropriada para se conseguir algo ótimo. Clemenceau said, "Life gets interesting when we fail, because it’s a sign that we’ve surpassed ourselves. In 1895, Lord Kelvin declared that heavier-than-air flying machines were impossible. Em 1895, Lord Kelvin declarou que máquinas voadoras mais pesadas que o ar eram impossíveis.

In October of 1903, the prevailing opinion of expert aerodynamicists was that maybe in 10 million years we could build an aircraft that would fly. And two months later on December 17th, Orville Wright powered the first airplane across a beach in North Carolina. The flight lasted 12 seconds and covered 120 feet. That was 1903. One year later, the next declarations of impossibilities began.

Ferdinand Foch, a French army general credited with having one of the most original and subtle minds in the French army, said, "Airplanes are interesting toys, but of no military value." Ferdinand Foch, general do exército francês creditado por ter uma das mentes mais originais e sutis do exército francês, disse: "Os aviões são brinquedos interessantes, mas sem valor militar". 40 years later, aero experts coined the term transonic. 40 anos depois, aero experts cunharam o termo transonic. They debated, should it have one S or two? Eles debateram, deveria ter um S ou dois? You see, they were having trouble in this flight regime, and it wasn’t at all clear that we could fly faster than the speed of sound. In 1947, there was no wind tunnel data beyond Mach 0.85. And yet, on Tuesday, October 14th, 1947, Chuck Yeager climbed into the cockpit of his Bell X-1 and he flew towards an unknown possibility, and in so doing, he became the first pilot to fly faster than the speed of sound. Six of eight Atlas rockets blew up on the pad. After 11 complete mission failures, we got our first images from space. And on that first flight we got more data than in all U-2 missions combined. It took a lot of failures to get there. Since we took to the sky, we have wanted to fly faster and farther. Desde que voamos para o céu, queríamos voar mais rápido e mais longe.

And to do so, we’ve had to believe in impossible things. And we’ve had to refuse to fear failure. That’s still true today. Today, we don’t talk about flying transonically, or even supersonically, we talk about flying hypersonically -- not Mach 2 or Mach 3, Mach 20. Hoje, não falamos sobre voar transonicamente, ou mesmo supersonicamente, falamos sobre voar hipersonicamente - não Mach 2 ou Mach 3, Mach 20. At Mach 20, we can fly from New York to Long Beach in 11 minutes and 20 seconds. At that speed, the surface of the airfoil is the temperature of molten steel -- 3,500 degrees Fahrenheit -- like a blast furnace. Nessa velocidade, a superfície do aerofólio é a temperatura do aço fundido - 3.500 graus Fahrenheit - como um alto-forno. We are essentially burning the airfoil as we fly it. And we are flying it, or trying to. DARPA’s hypersonic test vehicle is the fastest maneuvering aircraft ever built.

It’s boosted to near-space atop a Minotaur IV rocket. Now the Minotaur IV has too much impulse, so we have to bleed it off by flying the rocket at an 89 degree angle of attack for portions of the trajectory. Agora, o Minotaur IV tem muito impulso, por isso temos de sangrá-lo voando o foguete em um ângulo de ataque de 89 graus para partes da trajetória. That’s an unnatural act for a rocket. The third stage has a camera. We call it rocketcam. And it’s pointed at the hypersonic glider. This is the actual rocketcam footage from flight one. Esta é a filmagem real da câmera de foguete do primeiro voo. Now to conceal the shape, we changed the aspect ratio a little bit. But this is what it looks like from the third stage of the rocket looking at the unmanned glider as it heads into the atmosphere back towards Earth. We’ve flown twice.

In the first flight, no aerodynamic control of the vehicle. But we collected more hypersonic flight data than in 30 years of ground-based testing combined. Porém, coletamos mais dados de voo hipersônicos do que em 30 anos de testes terrestres combinados. And in the second flight, three minutes of fully-controlled, aerodynamic flight at Mach 20. E no segundo vôo, três minutos de vôo aerodinâmico totalmente controlado no Mach 20. We must fly again, because amazing, never-been-done-before things require that you fly. You can’t learn to fly at Mach 20 unless you fly. And while there’s no substitute for speed, maneuverability is a very close second. If a Mach 20 glider takes 11 minutes and 20 seconds to get from New York to Long Beach, a hummingbird would take, well, days.

You see, hummingbirds are not hypersonic, but they are maneuverable. In fact, the hummingbird is the only bird that can fly backwards. It can fly up, down, forwards, backwards, even upside-down. And so if we wanted to fly in this room or places where humans can’t go, we’d need an aircraft small enough and maneuverable enough to do so. This is a hummingbird drone. Este é um zangão beija-flor.

It can fly in all directions, even backwards. It can hover and rotate. This prototype aircraft is equipped with a video camera. It weighs less than one AA battery. It does not eat nectar. Não come néctar. In 2008, it flew for a whopping 20 seconds, a year later, two minutes, then six, eventually 11. Many prototypes crashed -- many. Muitos protótipos caíram - muitos. But there’s no way to learn to fly like a hummingbird unless you fly. Mas não há como aprender a voar como um beija-flor, a menos que você voe. (Applause) It’s beautiful, isn’t it. (Aplausos) É lindo, não é? Wow. It’s great. Matt is the first ever hummingbird pilot. (Applause)

Failure is part of creating new and amazing things. O fracasso faz parte da criação de coisas novas e surpreendentes.

We cannot both fear failure and make amazing new things -- like a robot with the stability of a dog on rough terrain, or maybe even ice; a robot that can run like a cheetah, or climb stairs like a human with the occasional clumsiness of a human. Não podemos temer o fracasso e fazer coisas novas incríveis - como um robô com a estabilidade de um cachorro em terrenos acidentados, ou talvez até gelo; um robô que pode correr como um guepardo ou subir escadas como um ser humano com a ocasional falta de jeito de um ser humano. Or perhaps, Spider Man will one day be Gecko Man. A gecko can support its entire body weight with one toe. One square millimeter of a gecko’s footpad has 14,000 hair-like structures called setae. Um milímetro quadrado da palmilha de uma lagartixa possui 14.000 estruturas semelhantes a cabelos, chamadas cerdas. They are used to help it grip to surfaces using intermolecular forces. Today we can manufacture structures that mimic the hairs of a gecko’s foot.

The result, a four-by-four-inch artificial nano-gecko adhesive. O resultado, um adesivo nano-lagartixa artificial de quatro por quatro polegadas. can support a static load of 660 pounds. pode suportar uma carga estática de 660 libras. That’s enough to stick six 42-inch plasma TV’s to your wall, no nails. So much for Velcro, right? And it’s not just passive structures, it’s entire machines.

This is a spider mite. Este é um ácaro. It’s one millimeter long, but it looks like Godzilla next to these micromachines. In the world of Godzilla spider mites, we can make millions of mirrors, each one-fifth the diameter of a human hair, moving at hundreds of thousands of times per second to make large screen displays, so that we can watch movies like "Godzilla" in high-def. No mundo dos ácaros de Godzilla, podemos fazer milhões de espelhos, cada um quinto do diâmetro de um cabelo humano, movendo-se centenas de milhares de vezes por segundo para fazer telas grandes, para que possamos assistir a filmes como "Godzilla "em alta definição. And if we can build machines at that scale, what about Eiffel Tower-like trusses at the microscale?

Today we are making metals that are lighter than Styrofoam, so light they can sit atop a dandelion puff and be blown away with a wisp of air -- so light that you can make a car that two people can lift, but so strong that it has the crash-worthiness of an SUV. From the smallest wisp of air to the powerful forces of nature’s storms.

There are 44 lightning strikes per second around the globe. Each lightning bolt heats the air to 44,000 degrees Fahrenheit -- hotter than the surface of the Sun. Cada raio aquece o ar a 44.000 graus Fahrenheit - mais quente que a superfície do sol. What if we could use these electromagnetic pulses as beacons, beacons in a moving network of powerful transmitters? Experiments suggest that lightning could be the next GPS. Electrical pulses form the thoughts in our brains.

Using a grid the size of your thumb, with 32 electrodes on the surface of his brain, Tim uses his thoughts to control an advanced prosthetic arm. And his thoughts made him reach for Katie. This is the first time a human has controlled a robot with thought alone. And it is the first time that Tim has held Katie’s hand in seven years. That moment mattered to Tim and Katie, and this green goo may someday matter to you. Esse momento foi importante para Tim e Katie, e essa gosma verde pode um dia importar para você. This green goo is perhaps the vaccine that could save your life. It was made in tobacco plants. Tobacco plants can make millions of doses of vaccine in weeks instead of months, and it might just be the first healthy use of tobacco ever. And if it seems far-fetched that tobacco plants could make people healthy, what about gamers that could solve problems that experts can’t solve? E se parece absurdo que as plantas de tabaco possam tornar as pessoas saudáveis, e os jogadores que poderiam resolver problemas que os especialistas não podem resolver?

Last September, the gamers of Foldit solved the three-dimensional structure of the retroviral protease that contributes to AIDS in rhesus monkeys. Em setembro passado, os jogadores do Foldit resolveram a estrutura tridimensional da protease retroviral que contribui para a AIDS em macacos rhesus. Now understanding this structure is very important for developing treatments. For 15 years, it was unsolved in the scientific community. The gamers of Foldit solved it in 15 days. Now they were able to do so by working together. Agora eles conseguiram trabalhar juntos. They were able to work together because they’re connected by the Internet. And others, also connected to the Internet, used it as an instrument of democracy. And together they changed the fate of their nation. E juntos eles mudaram o destino de sua nação. The Internet is home to two billion people, or 30 percent of the world’s population.

It allows us to contribute and to be heard as individuals. It allows us to amplify our voices and our power as a group. But it too had humble beginnings. In 1969, the internet was but a dream, a few sketches on a piece of paper. Em 1969, a internet era apenas um sonho, alguns esboços em um pedaço de papel. And then on October 29th, the first packet-switched message was sent from UCLA to SRI. The first two letters of the word "Login," that’s all that made it through -- an L and an O -- and then a buffer overflow crashed the system. As duas primeiras letras da palavra "Login", foi tudo o que conseguiu passar - um L e um O - e, em seguida, um estouro de buffer travou o sistema. (Laughter) Two letters, an L and an O, now a worldwide force. So who are these scientists and engineers at a magical place called DARPA?

They are nerds, and they are heroes among us. Eles são nerds e são heróis entre nós. They challenge existing perspectives at the edges of science and under the most demanding of conditions. They remind us that we can change the world if we defy the impossible and we refuse to fear failure. They remind us that we all have nerd power. Sometimes we just forget. Às vezes nós apenas esquecemos. You see, there was a time when you weren’t afraid of failure, when you were a great artist or a great dancer and you could sing, you were good at math, you could build things, you were an astronaut, an adventurer, Jacques Cousteau, you could jump higher, run faster, kick harder than anyone.

You believed in impossible things and you were fearless. Você acreditava em coisas impossíveis e era destemido. You were totally and completely in touch with your inner superhero. Scientists and engineers can indeed change the world. Cientistas e engenheiros podem realmente mudar o mundo. So can you. You were born to. So go ahead, ask yourself, what would you attempt to do if you knew you could not fail? Então vá em frente, pergunte a si mesmo, o que você tentaria fazer se soubesse que não poderia falhar? Now I want to say, this is not easy.

It’s hard to hold onto this feeling, really hard. I guess in some way, I sort of believe it’s supposed to be hard. Doubt and fear always creep in. We think someone else, someone smarter than us, someone more capable, someone with more resources will solve that problem. But there isn’t anyone else; there’s just you. And if we’re lucky, in that moment, someone steps into that doubt and fear, takes a hand and says, "Let me help you believe. E se tivermos sorte, naquele momento, alguém entra nessa dúvida e medo, pega uma mão e diz: "Deixe-me ajudá-lo a acreditar. Jason Harley did that for me.

Jason started at DARPA on March 18th, 2010. He was with our transportation team. I saw Jason nearly every day, sometimes twice a day. And more so than most, he saw the highs and the lows, the celebrations and the disappointments. And on one particularly dark day for me, Jason sat down and he wrote an email. He was encouraging, but firm. Ele era encorajador, mas firme. And when he hit send, he probably didn’t realize what a difference it would make. It mattered to me. In that moment and still today when I doubt, when I feel afraid, when I need to reconnect with that feeling, I remember his words, they were so powerful. Text: "There is only time enough to iron your cape and back to the skies for you.

♫ Superhero, superhero.

♫ ♫ Superhero, superhero. ♫ ♫ Superhero, superhero. ♫ ♫ Superhero, superhero. ♫ ♫ Superhero, superhero. Voice: Because that’s what being a superhero is all about. Voz: Porque é disso que se trata um super-herói.

RD: "There is only time enough to iron your cape and back to the skies for you. RD: "Só há tempo suficiente para passar sua capa e voltar aos céus para você.

And remember, be nice to nerds. E lembre-se, seja legal com os nerds. (Applause) Thank you. Thank you. (Applause)

Chris Anderson: Regina, thank you.

I have a couple of questions. So that glider of yours, the Mach 20 glider, the first one, no control, it ended up in the Pacific I think somewhere. Então aquele seu planador, o planador Mach 20, o primeiro, sem controle, acabou no Pacífico, eu acho em algum lugar. RD: Yeah, yeah.

It did. (CA: What happened on that second flight?) Yeah, it also went into the Pacific. Sim, também foi para o Pacífico. (CA: But this time under control?) We didn’t fly it into the Pacific. No, there are multiple portions of the trajectory that are demanding in terms of really flying at that speed. Não, existem várias partes da trajetória exigentes em termos de realmente voar nessa velocidade. And so in the second flight, we were able to get three minutes of fully aerodynamic control of the vehicle before we lost it. CA: I imagine you’re not planning to open up to passenger service from New York to Long Beach anytime soon.

RD: It might be a little warm. RD: Pode estar um pouco quente.

CA: What do you picture that glider being used for?

RD: Well our responsibility is to develop the technology for this.

How it’s ultimately used will be determined by the military. Now the purpose of the vehicle though, the purpose of the technology, is to be able to reach anywhere in the world in less than 60 minutes. CA: And to carry a payload of more than a few pounds?

(RD: Yeah.) Like what’s the payload it could carry? Tipo, qual é a carga útil que poderia carregar? RD: Well I don’t think we ultimately know what it will be, right.

We’ve got to fly it first. CA: But not necessarily just a camera?

RD: No, not necessarily just a camera.

CA: It’s amazing.

The hummingbird? RD: Yeah?

CA: I’m curious, you started your beautiful sequence on flight with a plane kind of trying to flap its wings and failing horribly, and there haven’t been that many planes built since that flap wings.

Why did we think that this was the time to go biomimicry and copy a hummingbird? Isn’t that a very expensive solution for a small maneuverable flying object? RD: So I mean, in part, we wondered if it was possible to do it.

And you have to revisit these questions over time. The folks at AeroVironment tried 300 or more different wing designs, 12 different forms of the avionics. It took them 10 full prototypes to get something that would actually fly. But there’s something really interesting about a flying machine that looks like something you’d recognize. So we often talk about stealth as a means for avoiding any type of sensing, but when things looks just natural, you also don’t see them. Por isso, frequentemente falamos sobre furtividade como um meio de evitar qualquer tipo de detecção, mas quando as coisas parecem naturais, você também não as vê. CA: Ah.

So it’s not necessarily just the performance. Portanto, não é necessariamente apenas o desempenho. It’s partly the look. É parcialmente o visual. (RD: Sure.) It’s actually, "Look at that cute hummingbird flying into my headquarters." Na verdade, é "Olhe aquele beija-flor fofo voando na minha sede". (Laughter) Because I think, as well as the awe of looking at that, I’m sure some people here are thinking, technology catches up so quick, how long is it before some crazed geek with a little remote control flies one through a window of the White House? I mean, do you worry about the Pandora’s box issue here? RD: Well look, our singular mission is the creation and prevention of strategic surprise. RD: Bem, nossa missão singular é a criação e prevenção de surpresa estratégica.

That’s what we do. It would be inconceivable for us to do that work if we didn’t make people excited and uncomfortable with the things that we do at the same time. It’s just the nature of what we do. Now our responsibility is to push that edge. And we have to be, of course, mindful and responsible of how the technology is developed and ultimately used, but we can’t simply close our eyes and pretend that it isn’t advancing; it’s advancing. CA: I mean, you’re clearly a really inspiring leader.

And you persuade people to go to these great feats of invention, but at a personal level, in a way I can’t imagine doing your job. Do you wake up in the night sometimes, just asking questions about the possibly unintended consequences of your team’s brilliance? RD: Sure.

I think you couldn’t be human if you didn’t ask those questions. Eu acho que você não poderia ser humano se não fizesse essas perguntas. CA: How do you answer them?

RD: Well I don’t always have answers for them, right.

I think that we learn as time goes on. Eu acho que aprendemos com o passar do tempo. My job is one of the most exhilarating jobs you could have. I work with some of the most amazing people. And with that exhilaration, comes a really deep sense of responsibility. E com essa alegria, surge um profundo senso de responsabilidade. And so you have on the one hand this tremendous lift of what’s possible and this tremendous seriousness of what it means. E assim você tem, por um lado, esse tremendo levantamento do que é possível e essa tremenda seriedade do que isso significa. CA: Regina, that was jaw-dropping, as they say. CA: Regina, isso foi de cair o queixo, como eles dizem.

Thank you so much for coming to TED. (RD: Thank you. (Applause)