×

Utilizziamo i cookies per contribuire a migliorare LingQ. Visitando il sito, acconsenti alla nostra politica dei cookie.


image

Arantik | Science and Technology, شکافتن اتم برای تولید انرژی هسته ای و بمب اتم

شکافتن اتم برای تولید انرژی هسته ای و بمب اتم

یکی از موضوعاتی که این روزا زیاد می‌شنویم، بحث غنی‌سازی و انرژی هسته‌ایه.

برای همین تصمیم گرفتم یکی از ویدیوها رو به این موضوع اختصاص بدم

تا با هم ببینیم اصن غنی‌سازی یعنی چی، چجوری انجام میشه،

چرا اینقد اهمیت داره، بعد از همه مهمتر اینکه چجوری تونستیم از کوچیکترین

اجزای سازنده‌ی جهان یعنی اتمها یه همچین انرژی عظیمی بیرون بکشیم؟

تا آخر این ویدیو با من باشید تا از زیر و بم انرژی هسته‌ای و

راکتورهای اتمی و سانتریفیوژ و همه‌ی این چیزا باخبر بشیم.

اگرم به اینجور محتواها علاقه داری

دکمه‌ی سابسکرایب زیر ویدیورم بزن و عضو کانالم شو.

خب اول از همه باید یه نگاهی به ساختار اتم بندازیم.

الان دیگه همه میدونن اتم چیه.

کوچیکترین اجزای سازنده‌ی ماده که خواص ماده رو تعیین می‌کنه.

اتما خودشون از ذرات زیراتمی ساخته شدن یعنی پروتون، نوترون، الکترون.

پروتون‌ها و نوترون‌ها داخل هسته‌ی اتمن، الکترونا هم دور این هسته میچرخن.

تعداد پروتونای مختلف باعث شده 118 تا عنصر مختلف

داشته باشیم که هرکدوم خواص خودشونو دارن.

به تعداد پروتونا میگن عدد اتمی، پس همین عدد اتمیه که تعیین میکنه

مثلا عنصر طلا با عنصر مس فرق داشته باشه چون اتم طلا مثلا 79 تا

پروتون داخل هسته‌ش هست ولی اتم مس عدد اتمیش

بیست و نه، یعنی بیست و نه تا پروتون داره.

پروتون بار الکتریکی مثبت داره، الکترون بار الکتریکی منفی.

نوترون اما بار الکتریکی نداره خنثاس.

در حالت عادی تعداد الکترونا و تعداد پروتونای یه اتم باهم برابره

که باعث میشه اتم از نظر بار الکتریکی خنثا باشه.

اما در مورد تعداد نوترونا قضیه یه کم فرق میکنه.

معمولا تعداد نوترونا و تعداد پروتونای داخل هسته با هم برابره،

اما بعضی از عناصر میتونن تعداد نوترونای مختلفی داشته باشن.

مثلا همین اتم کربن شیش تا پروتون داره، شیش تا نوترون، شیش تا هم الکترون،

اما بعضی از اتماش به جای شیش تا نوترون، هفت تا یا هشت تا نوترون دارن، یا بیشتر.

همه‌شون اتم کربنن اما یه مقدار جزیی خواصشون باهم فرق میکنه.

به این جور اتما که مربوط به یه عنصرن ولی تعداد

نوتروناشون باهم فرق میکنه، میگن ایزوتوپ.

به مجموع تعداد پروتونا و تعداد نوترونای داخل هسته‌ی یه اتم میگن عدد جرمی اون اتم.

ایزوتوپای مختلف یه عنصر رو با عدد جرمی مشخص میکنن.

یعنی اون ایزوتوپ کربن که 6 تا پروتون داره 6 تا نوترون، بهش میگن کربن 12

یا اونی که 6 تا پروتون داره 7 تا نوترون بهش میگن کربن 13 .

پس تا اینجا یه شناخت کلی از ساختار اتم و مفهوم مهم ایزوتوپ

بدست آوردیم، ولی خب جزییات بیشتری داره که توی رشته‌هایی مث

فیزیک هسته‌ای خیلی دقیق و کامل دربارش توضیح داده میشه.

حالا بریم ببینیم اصن تو دل اتم چه اتفاقاتی میفته که

باعث میشه بعضی از اتما پرتوزا باشن، بعضیا نباشن.

جهان ما از همین ذرات زیراتمی ساخته شده که این ذرات میتونن روی همدیگه تاثیر بذارن.

تا الان ما کشف کردیم که ۴ تا نیروی بنیادی توی طبیعت وجود داره

که این تعاملات بین ذرات زیراتمی رو کنترل می‌کنن.

یعنی به صورت ساده میتونیم بگیم که اگه ذرات زیراتمی

کلمات یه زبان باشن، این ۴ تا نیرو مث دستور زبانن.

تمام اتفاقات فیزیکی یا شیمیایی که توی دنیای ما میفته

میتونیم بگیم مستقیم یا غیرمستقیم نتیجه‌ی همین چهارتا نیروی بنیادی‌ان،

یعنی گرانش یا همون جاذبه، الکترومغناطیس، هسته‌ای قوی، هسته‌ای ضعیف

نیروی گرانش تو ابعاد خیلی بزرگ و فاصله‌های خیلی زیاد خودشو بیشتر نشون میده.

یعنی مثلا گرانش بین زمین و ماه زیاده اما بین ذرات

زیراتمی انقدر ناچیزه که اصلا میشه ازش چشم‌پوشی کرد.

نیروی الکترومغناطیس هم به صورت خلاصه میشه گفت همون نیروییه

که بین دو تا بار الکتریکی هم‌نام یا غیرهم‌نام وجود داره.

مثلا بین الکترونی که دور هسته میچرخه و پروتونی که داخل هسته‌س

نیروی الکترومغناطیسی وجود داره که بردش نسبت به گرانش خیلی کمتره.

میمونه دو تا نیروی هسته‌ای قوی و هسته‌ای ضعیف.

نیروی هسته‌ای قوی،‌ همون نیروییه که کوارک‌ها رو کنار هم

نگه میداره تا پروتونا و نوترونا تشکیل بشن.

بعد از اونطرفم دوباره پروتونا و نوترونا رو کنار هم نگه میداره تا هسته‌ی اتم بوجود بیاد.

برد نیروی هسته‌ای قوی باز از الکترومغناطیس کمتره، یعنی یه چیزی در حد قطر هسته‌س.

نیروی هسته‌ای ضعیف، باز هم بردش از هسته‌ای قوی کمتره هم قدرتش.

این نیرو مسوول واپاشی هسته‌ی اتمه.

اینکه واپاشی دقیقا چیه جلوتر به صورت کامل توضیح میدم.

فقط فعلا در همین حد بگم که واپاشی باعث میشه که یه سری تغییراتی

توی تعداد پروتونا و نوترونای هسته‌ی اتم بوجود بیاد.

پس اینا شدن چهار تا نیروی بنیادی طبیعت که روی ذرات سازنده اتم‌ها تاثیر می‌ذارن.

اما یه مساله‌ای که هست اینه که توی یه وضعیتای خاصی، اتما ناپایدار میشن.

دو تا حالت ناپایداری برای یه اتم وجود داره.

حالت اول اینه که اتم، یه الکترون بگیره یا از دست بده.

این باعث میشه اتم از حالت خنثا دربیاد و بار الکتریکی مثبت یا منفی داشته باشه.

به اینجور اتما میگن یون.

دلیل ناپایداری یون اینه که تمایل خیلی زیادی داره که با اتما یا یونای دیگه واکنش بده.

مثلا یون سدیم با یون کلر وقتی به هم میرسن با یه واکنش شدید

به هم میچسبن و همین نمکی که تو غذامون میریزیم به وجود میاد.

این یه نوع از ناپایداری اتماس.

اما نوع دیگه‌ای که تو این ویدیو بیشتر باهاش کار داریم

ناپایداری هسته‌ی اتمه، دیگه ربطی به بار الکتریکی نداره.

وقتی که تعادل بین تعداد پروتونا و تعداد نوترونای داخل

هسته بهم می‌ریزه، اتم ناپایدار میشه برای همین سعی می‌کنه به یکی از این سه روش

از شر اون ذره‌های اضافی خلاص بشه و دوباره پایدار بشه:

روش اول اینه که یه ذره‌ی آلفا از هسته‌ی اون اتم بیرون میاد

که این ذره‌ی آلفا از دو تا پروتون و دو تا نوترون تشکیل شده.

با این کار، عدد اتمی اون اتم ناپایدار، دو تا کمتر میشه

که باعث میشه کلا تبدیل به یه عنصر دیگه بشه.

این روشو میگن واپاشی آلفا یا فروپاشی آلفا.

روش دوم اینه که یه نوترون تبدیل میشه به یه پروتون، یا برعکس

پروتون تبدیل میشه به نوترون، که به این روش میگن واپاشی بتا.

تو این روشم جنس اتم تغییر میکنه چون عدد اتمیش تغییر میکنه.

روش سومم واپاشی گاما هست که باعث میشه یه بسته‌ی انرژی به شکل فوتون

از هسته‌ خارج بشه، سطح انرژی هسته تغییر کنه، هسته پایدار بشه.

پس واپاشی هسته‌ای یا فروپاشی هسته‌ای، به اتفاقاتی گفته میشه که توی هسته‌ی

یه اتم ناپایدار میفته وباعث میشه که سطح انرژی اون اتم یا حتی جنس اتم تغییر کنه.

کنار این تغییر، یه پرتوهایی هم از هسته‌ی اتم منتشر میشه،

که بهش میگن پرتوهای رادیواکتیو. به این اتم‌ها هم میگن اتمای پرتوزا.

معمولا وقتی تعداد نوترونا 1.5 برابر تعداد پروتونا میشه اون اتم پرتوزا میشه.

برای همین از یه عنصر خاص، ممکنه بعضی از ایزوتوپاش

پرتوزا باشن بعضیاشون نباشن، مثلا سرب اینجوریه.

سال 1896 هانری بکرل دانشمند فرانسوی به صورت اتفاقی متوجه شد

که وقتی فیلمای عکاسی کنار فلز اورانیوم قرار میگیرن

یه سری لکه‌های نورانی روی این فیلما ظاهر میشه.

بکرل از این اتفاق نتیجه گرفت که اورانیوم پرتوهای ناشناخته‌ای از خودش منتشر میکنه

اما خب اون موقع نتونست یه توضیح دقیقی براش پیدا کنه.

این اتفاق عجیب نظر دو تا دانشمند بزرگ یعنی ماری کوری و شوهرش

پیر کوری رو جلب کرد و شروع کردن به تحقیق تو این زمینه.

از چندین سال تحقیقشون به این نتیجه رسیدن که این پرتوها در اصل انرژی گرمایی‌ان.

مواد پرتوزایی مث اورانیوم، با این کار انرژی گرمایی از خودشون منتشر میکنن.

اسم این پدیده‌ی عجیبم گذاشتن رادیواکتیویته.

این که مواد پرتوزا می‌تونستن تو یه مدت طولانی انرژی زیادی از خودشون منتشر کنن،

بعضی از دانشمندا رو به این فکر انداخت که شاید بتونیم این انرژی رو

یجوری کنترل کنیم و ازش استفاده‌های مفیدی بکنیم.

بعد از اینکه سال 1905 اینشتین فرمول معروف خودش یعنی E=MC2 رو

معرفی کرد، دلیل این انرژی عظیمی که از اتمای پرتوزا بوجود میاد خیلی روشنتر شد.

تو این رابطه، C سرعت نوره که مقدارش سیصدهزار کیلومتر بر ثانیه‌س

که وقتی به توان دو میرسه میشه 90 میلیارد، برای همینه که مقدار انرژی‌ای

که از یه مقدار خیلی کمی ماده به دست میاد خیلی خیلی زیاده.

در واقع اتفاقی که توی پرتوزایی میفته همینه که طبقه رابطه‌ی E=MC2،

ذرات سازنده‌ی اون ماده‌ی پرتوزا کم‌کم تبدیل به انرژی میشن.

از این جا به بعد دیگه یواش یواش شروع کردیم به دستکاری توی اتما.

سال 1938 یعنی یه سال مونده به شروع جنگ جهانی دوم، دو تا دانشمند آلمانی

دو تا دانشمند آلمانی به نام اتو هان (Otto Hahn) و فریتز استراسمن (Fritz Strassmann)

تونستن با بمباران اتم‌های اورانیوم با نوترون، شکافت هسته‌ای رو کشف کنن.

وقتی که یه نوترون به هسته‌ی اتم اورانیوم 235 که یکی از ایزوتوپای

اورانیومه برخورد میکنه تبدیل میشه به اورانیوم 236 .

اورانیوم 236 شدیدا ناپایداره در نتیجه تو یه زمان خیلی کم در حد هزارم

ثانیه شکسته میشه به دو تا اتم سبک‌تر.

این وسط یه مقدار پرتوهای رادیواکتیوم منتشر میشه و چند تا دونه نوترونم آزاد میشه.

این اتفاقو بهش میگن شکافت هسته‌ای یا فیژن (fission).

بعدش دانشمندا متوجه شدن که اون نوترونای اضافی که از طریق شکافت

بوجود میان، باز هرکدومشون میتونن یه اتم دیگه رو شکافت بدن.

نوترونای حاصل از اون شکافتا هم باز اتمای بیشتری

رو بشکافن و همینجوری زنجیروار ادامه پیدا کنه.

اینو بهش میگن واکنش زنجیره‌ای که توی یه زمانی خیلی خیلی

کوتاه‌تر از یه ثانیه می‌تونه یه انرژی وحشتناکی آزاد کنه.

همون اتفاقی که توی بمبای اتمی میفته.

اما توی نیروگاه‌های هسته‌ای، تعداد یا سرعت نوترونای حاصل از شکافتو

کنترل می‌کنن تا اون واکنش زنجیره‌ای اتفاق نیفته، یعنی به صورت

کنترل‌شده ازش انرژی می‌گیرن که یه کم جلوتر درباره‌ش صحبت میکنم.

همون سالا بود که جرقه‌های جنگ جهانی دوم کم‌کم داشت زده میشد.

دانشمندای بزرگی مثل نیلز بور (Niels Bohr) و انریکو فرمی (Enrico Fermi) ساخت

سلاحای هسته‌ای با استفاده از همین واکنش زنجیره‌ای شکافتو کاملا ممکن می‌دونستن.

بعد از شروع جنگ جهانی دوم، آمریکا تو یه پروژه‌ی سرّی به نام پروژه‌ی منهتن

یه تعداد زیادی از بزرگترین دانشمندا و بهترین فیزیکدانای دنیارو جمع کرد و

شروع کردن به تحقیقات توی این زمینه برای ساختن بمب اتم.

در نتیجه‌ی پروژه‌ی منهتن، آمریکا دو تا بمب اتمی ساخت:

Little Boy یا پسر کوچک، Fat Man یا مرد چاق.

سال 1945 اولی رو انداخت رو شهر هیروشیما و دومی رو انداخت رو شهر ناگازاکی ژاپن.

حدود 220000 نفر از مردم ژاپن با این دوتا بمب کشته شدن

که نصفشون همون ثانیه‌های اول مردن، نصفشونم تا چند ماه بعد

به خاطر تشعشعاتی ک توی محیط بود.

حالا تو این قسمت می‌خوایم ببینیم تو نیروگاه‌های هسته‌ای

چه اتفاقی میفته، چجوری از تو دل اتم انرژی بیرون میکشیم.

خب همونطور که گفتم کشف کردیم که وقتی یه نوترون به اتم اورانیوم 235،

شلیک می‌کنین، تبدیل میشه به اورانیوم 236 که خیلی ناپایداره و سریعا شکسته میشه

به دو تا اتم دیگه این وسطم یه مقدار انرژی آزاد میشه با چند تا دونه دیگه نوترون.

این نوترونا خودشون دوباره میتونن همین بلا رو سر چند تا

اتم دیگه بیارن درنتیجه یه واکنش شکافت زنجیره‌ای به وجود میاد.

ما اگه بخوایم از این منبع عظیم انرژی استفاده کنیم دو تا مشکل بزرگ سر راهمون هست.

مشکل اول اینه که اورانیوم 235 که برای واکنش شکافت

لازم داریم، فقط 0.7 درصد از کل اورانیومیه که تو طبیعت پیدا میشه.

99.3 درصدش اورانیوم 238 ئه. این مشکلو با غنی‌سازی تونستیم حل کنیم.

مشکل دوم اینه که اگه این واکنش زنجیره‌ای از کنترل خارج بشه دقیقا میشه

مث یه بمب اتمی که هر چی دورشه و تا شعاع چند کیلومتری خاکستر میکنه.

این مشکلم با مواد کندکننده‌ی نوترون حل کردیم.

اما غنی‌سازی چیه؟ غنی‌سازی یعنی بالا بردن غلظت اورانیوم 235 نسبت به اورانیوم 238.

یعنی اورانیوممون غنی‌تر میشه دیگه، اون غلظت

شکافتن اتم برای تولید انرژی هسته ای و بمب اتم Splitting|atom|||||||| Splitting atoms to produce nuclear energy and atomic bombs Fractionner des atomes pour produire de l'énergie nucléaire et des bombes atomiques Dividere gli atomi per produrre energia nucleare e bombe atomiche Het splitsen van atomen om kernenergie en atoombommen te produceren Dzielenie atomów w celu wytworzenia energii jądrowej i bomb atomowych Divisão de átomos para produzir energia nuclear e bombas atômicas Расщепление атомов для производства ядерной энергии и атомных бомб

یکی از موضوعاتی که این روزا زیاد می‌شنویم، بحث غنی‌سازی و انرژی هسته‌ایه. One of the topics that we hear a lot these days is the discussion of nuclear enrichment and energy.

برای همین تصمیم گرفتم یکی از ویدیوها رو به این موضوع اختصاص بدم That's why I decided to dedicate one of the videos to this topic.

تا با هم ببینیم اصن غنی‌سازی یعنی چی، چجوری انجام میشه، So we can see together what enrichment really means, how it is done.

چرا اینقد اهمیت داره، بعد از همه مهمتر اینکه چجوری تونستیم از کوچیکترین

اجزای سازنده‌ی جهان یعنی اتمها یه همچین انرژی عظیمی بیرون بکشیم؟

تا آخر این ویدیو با من باشید تا از زیر و بم انرژی هسته‌ای و

راکتورهای اتمی و سانتریفیوژ و همه‌ی این چیزا باخبر بشیم.

اگرم به اینجور محتواها علاقه داری

دکمه‌ی سابسکرایب زیر ویدیورم بزن و عضو کانالم شو.

خب اول از همه باید یه نگاهی به ساختار اتم بندازیم.

الان دیگه همه میدونن اتم چیه.

کوچیکترین اجزای سازنده‌ی ماده که خواص ماده رو تعیین می‌کنه.

اتما خودشون از ذرات زیراتمی ساخته شدن یعنی پروتون، نوترون، الکترون.

پروتون‌ها و نوترون‌ها داخل هسته‌ی اتمن، الکترونا هم دور این هسته میچرخن.

تعداد پروتونای مختلف باعث شده 118 تا عنصر مختلف

داشته باشیم که هرکدوم خواص خودشونو دارن.

به تعداد پروتونا میگن عدد اتمی، پس همین عدد اتمیه که تعیین میکنه

مثلا عنصر طلا با عنصر مس فرق داشته باشه چون اتم طلا مثلا 79 تا

پروتون داخل هسته‌ش هست ولی اتم مس عدد اتمیش

بیست و نه، یعنی بیست و نه تا پروتون داره.

پروتون بار الکتریکی مثبت داره، الکترون بار الکتریکی منفی.

نوترون اما بار الکتریکی نداره خنثاس.

در حالت عادی تعداد الکترونا و تعداد پروتونای یه اتم باهم برابره

که باعث میشه اتم از نظر بار الکتریکی خنثا باشه.

اما در مورد تعداد نوترونا قضیه یه کم فرق میکنه.

معمولا تعداد نوترونا و تعداد پروتونای داخل هسته با هم برابره،

اما بعضی از عناصر میتونن تعداد نوترونای مختلفی داشته باشن.

مثلا همین اتم کربن شیش تا پروتون داره، شیش تا نوترون، شیش تا هم الکترون،

اما بعضی از اتماش به جای شیش تا نوترون، هفت تا یا هشت تا نوترون دارن، یا بیشتر.

همه‌شون اتم کربنن اما یه مقدار جزیی خواصشون باهم فرق میکنه.

به این جور اتما که مربوط به یه عنصرن ولی تعداد

نوتروناشون باهم فرق میکنه، میگن ایزوتوپ.

به مجموع تعداد پروتونا و تعداد نوترونای داخل هسته‌ی یه اتم میگن عدد جرمی اون اتم.

ایزوتوپای مختلف یه عنصر رو با عدد جرمی مشخص میکنن.

یعنی اون ایزوتوپ کربن که 6 تا پروتون داره 6 تا نوترون، بهش میگن کربن 12

یا اونی که 6 تا پروتون داره 7 تا نوترون بهش میگن کربن 13 .

پس تا اینجا یه شناخت کلی از ساختار اتم و مفهوم مهم ایزوتوپ

بدست آوردیم، ولی خب جزییات بیشتری داره که توی رشته‌هایی مث

فیزیک هسته‌ای خیلی دقیق و کامل دربارش توضیح داده میشه.

حالا بریم ببینیم اصن تو دل اتم چه اتفاقاتی میفته که

باعث میشه بعضی از اتما پرتوزا باشن، بعضیا نباشن.

جهان ما از همین ذرات زیراتمی ساخته شده که این ذرات میتونن روی همدیگه تاثیر بذارن.

تا الان ما کشف کردیم که ۴ تا نیروی بنیادی توی طبیعت وجود داره

که این تعاملات بین ذرات زیراتمی رو کنترل می‌کنن.

یعنی به صورت ساده میتونیم بگیم که اگه ذرات زیراتمی

کلمات یه زبان باشن، این ۴ تا نیرو مث دستور زبانن.

تمام اتفاقات فیزیکی یا شیمیایی که توی دنیای ما میفته

میتونیم بگیم مستقیم یا غیرمستقیم نتیجه‌ی همین چهارتا نیروی بنیادی‌ان،

یعنی گرانش یا همون جاذبه، الکترومغناطیس، هسته‌ای قوی، هسته‌ای ضعیف

نیروی گرانش تو ابعاد خیلی بزرگ و فاصله‌های خیلی زیاد خودشو بیشتر نشون میده.

یعنی مثلا گرانش بین زمین و ماه زیاده اما بین ذرات

زیراتمی انقدر ناچیزه که اصلا میشه ازش چشم‌پوشی کرد.

نیروی الکترومغناطیس هم به صورت خلاصه میشه گفت همون نیروییه

که بین دو تا بار الکتریکی هم‌نام یا غیرهم‌نام وجود داره.

مثلا بین الکترونی که دور هسته میچرخه و پروتونی که داخل هسته‌س

نیروی الکترومغناطیسی وجود داره که بردش نسبت به گرانش خیلی کمتره.

میمونه دو تا نیروی هسته‌ای قوی و هسته‌ای ضعیف.

نیروی هسته‌ای قوی،‌ همون نیروییه که کوارک‌ها رو کنار هم

نگه میداره تا پروتونا و نوترونا تشکیل بشن.

بعد از اونطرفم دوباره پروتونا و نوترونا رو کنار هم نگه میداره تا هسته‌ی اتم بوجود بیاد.

برد نیروی هسته‌ای قوی باز از الکترومغناطیس کمتره، یعنی یه چیزی در حد قطر هسته‌س.

نیروی هسته‌ای ضعیف، باز هم بردش از هسته‌ای قوی کمتره هم قدرتش.

این نیرو مسوول واپاشی هسته‌ی اتمه.

اینکه واپاشی دقیقا چیه جلوتر به صورت کامل توضیح میدم.

فقط فعلا در همین حد بگم که واپاشی باعث میشه که یه سری تغییراتی

توی تعداد پروتونا و نوترونای هسته‌ی اتم بوجود بیاد.

پس اینا شدن چهار تا نیروی بنیادی طبیعت که روی ذرات سازنده اتم‌ها تاثیر می‌ذارن.

اما یه مساله‌ای که هست اینه که توی یه وضعیتای خاصی، اتما ناپایدار میشن.

دو تا حالت ناپایداری برای یه اتم وجود داره.

حالت اول اینه که اتم، یه الکترون بگیره یا از دست بده.

این باعث میشه اتم از حالت خنثا دربیاد و بار الکتریکی مثبت یا منفی داشته باشه.

به اینجور اتما میگن یون.

دلیل ناپایداری یون اینه که تمایل خیلی زیادی داره که با اتما یا یونای دیگه واکنش بده.

مثلا یون سدیم با یون کلر وقتی به هم میرسن با یه واکنش شدید

به هم میچسبن و همین نمکی که تو غذامون میریزیم به وجود میاد.

این یه نوع از ناپایداری اتماس.

اما نوع دیگه‌ای که تو این ویدیو بیشتر باهاش کار داریم

ناپایداری هسته‌ی اتمه، دیگه ربطی به بار الکتریکی نداره.

وقتی که تعادل بین تعداد پروتونا و تعداد نوترونای داخل

هسته بهم می‌ریزه، اتم ناپایدار میشه برای همین سعی می‌کنه به یکی از این سه روش

از شر اون ذره‌های اضافی خلاص بشه و دوباره پایدار بشه:

روش اول اینه که یه ذره‌ی آلفا از هسته‌ی اون اتم بیرون میاد

که این ذره‌ی آلفا از دو تا پروتون و دو تا نوترون تشکیل شده.

با این کار، عدد اتمی اون اتم ناپایدار، دو تا کمتر میشه

که باعث میشه کلا تبدیل به یه عنصر دیگه بشه.

این روشو میگن واپاشی آلفا یا فروپاشی آلفا.

روش دوم اینه که یه نوترون تبدیل میشه به یه پروتون، یا برعکس

پروتون تبدیل میشه به نوترون، که به این روش میگن واپاشی بتا.

تو این روشم جنس اتم تغییر میکنه چون عدد اتمیش تغییر میکنه.

روش سومم واپاشی گاما هست که باعث میشه یه بسته‌ی انرژی به شکل فوتون

از هسته‌ خارج بشه، سطح انرژی هسته تغییر کنه، هسته پایدار بشه.

پس واپاشی هسته‌ای یا فروپاشی هسته‌ای، به اتفاقاتی گفته میشه که توی هسته‌ی

یه اتم ناپایدار میفته وباعث میشه که سطح انرژی اون اتم یا حتی جنس اتم تغییر کنه.

کنار این تغییر، یه پرتوهایی هم از هسته‌ی اتم منتشر میشه،

که بهش میگن پرتوهای رادیواکتیو. به این اتم‌ها هم میگن اتمای پرتوزا.

معمولا وقتی تعداد نوترونا 1.5 برابر تعداد پروتونا میشه اون اتم پرتوزا میشه.

برای همین از یه عنصر خاص، ممکنه بعضی از ایزوتوپاش

پرتوزا باشن بعضیاشون نباشن، مثلا سرب اینجوریه.

سال 1896 هانری بکرل دانشمند فرانسوی به صورت اتفاقی متوجه شد

که وقتی فیلمای عکاسی کنار فلز اورانیوم قرار میگیرن

یه سری لکه‌های نورانی روی این فیلما ظاهر میشه.

بکرل از این اتفاق نتیجه گرفت که اورانیوم پرتوهای ناشناخته‌ای از خودش منتشر میکنه

اما خب اون موقع نتونست یه توضیح دقیقی براش پیدا کنه.

این اتفاق عجیب نظر دو تا دانشمند بزرگ یعنی ماری کوری و شوهرش

پیر کوری رو جلب کرد و شروع کردن به تحقیق تو این زمینه.

از چندین سال تحقیقشون به این نتیجه رسیدن که این پرتوها در اصل انرژی گرمایی‌ان.

مواد پرتوزایی مث اورانیوم، با این کار انرژی گرمایی از خودشون منتشر میکنن.

اسم این پدیده‌ی عجیبم گذاشتن رادیواکتیویته.

این که مواد پرتوزا می‌تونستن تو یه مدت طولانی انرژی زیادی از خودشون منتشر کنن،

بعضی از دانشمندا رو به این فکر انداخت که شاید بتونیم این انرژی رو

یجوری کنترل کنیم و ازش استفاده‌های مفیدی بکنیم.

بعد از اینکه سال 1905 اینشتین فرمول معروف خودش یعنی E=MC2 رو

معرفی کرد، دلیل این انرژی عظیمی که از اتمای پرتوزا بوجود میاد خیلی روشنتر شد.

تو این رابطه، C سرعت نوره که مقدارش سیصدهزار کیلومتر بر ثانیه‌س

که وقتی به توان دو میرسه میشه 90 میلیارد، برای همینه که مقدار انرژی‌ای

که از یه مقدار خیلی کمی ماده به دست میاد خیلی خیلی زیاده.

در واقع اتفاقی که توی پرتوزایی میفته همینه که طبقه رابطه‌ی E=MC2،

ذرات سازنده‌ی اون ماده‌ی پرتوزا کم‌کم تبدیل به انرژی میشن.

از این جا به بعد دیگه یواش یواش شروع کردیم به دستکاری توی اتما.

سال 1938 یعنی یه سال مونده به شروع جنگ جهانی دوم، دو تا دانشمند آلمانی

دو تا دانشمند آلمانی به نام اتو هان (Otto Hahn) و فریتز استراسمن (Fritz Strassmann)

تونستن با بمباران اتم‌های اورانیوم با نوترون، شکافت هسته‌ای رو کشف کنن.

وقتی که یه نوترون به هسته‌ی اتم اورانیوم 235 که یکی از ایزوتوپای

اورانیومه برخورد میکنه تبدیل میشه به اورانیوم 236 .

اورانیوم 236 شدیدا ناپایداره در نتیجه تو یه زمان خیلی کم در حد هزارم

ثانیه شکسته میشه به دو تا اتم سبک‌تر.

این وسط یه مقدار پرتوهای رادیواکتیوم منتشر میشه و چند تا دونه نوترونم آزاد میشه.

این اتفاقو بهش میگن شکافت هسته‌ای یا فیژن (fission).

بعدش دانشمندا متوجه شدن که اون نوترونای اضافی که از طریق شکافت

بوجود میان، باز هرکدومشون میتونن یه اتم دیگه رو شکافت بدن.

نوترونای حاصل از اون شکافتا هم باز اتمای بیشتری

رو بشکافن و همینجوری زنجیروار ادامه پیدا کنه.

اینو بهش میگن واکنش زنجیره‌ای که توی یه زمانی خیلی خیلی

کوتاه‌تر از یه ثانیه می‌تونه یه انرژی وحشتناکی آزاد کنه.

همون اتفاقی که توی بمبای اتمی میفته.

اما توی نیروگاه‌های هسته‌ای، تعداد یا سرعت نوترونای حاصل از شکافتو

کنترل می‌کنن تا اون واکنش زنجیره‌ای اتفاق نیفته، یعنی به صورت

کنترل‌شده ازش انرژی می‌گیرن که یه کم جلوتر درباره‌ش صحبت میکنم.

همون سالا بود که جرقه‌های جنگ جهانی دوم کم‌کم داشت زده میشد.

دانشمندای بزرگی مثل نیلز بور (Niels Bohr) و انریکو فرمی (Enrico Fermi) ساخت

سلاحای هسته‌ای با استفاده از همین واکنش زنجیره‌ای شکافتو کاملا ممکن می‌دونستن.

بعد از شروع جنگ جهانی دوم، آمریکا تو یه پروژه‌ی سرّی به نام پروژه‌ی منهتن

یه تعداد زیادی از بزرگترین دانشمندا و بهترین فیزیکدانای دنیارو جمع کرد و

شروع کردن به تحقیقات توی این زمینه برای ساختن بمب اتم.

در نتیجه‌ی پروژه‌ی منهتن، آمریکا دو تا بمب اتمی ساخت:

Little Boy یا پسر کوچک، Fat Man یا مرد چاق.

سال 1945 اولی رو انداخت رو شهر هیروشیما و دومی رو انداخت رو شهر ناگازاکی ژاپن.

حدود 220000 نفر از مردم ژاپن با این دوتا بمب کشته شدن

که نصفشون همون ثانیه‌های اول مردن، نصفشونم تا چند ماه بعد

به خاطر تشعشعاتی ک توی محیط بود.

حالا تو این قسمت می‌خوایم ببینیم تو نیروگاه‌های هسته‌ای

چه اتفاقی میفته، چجوری از تو دل اتم انرژی بیرون میکشیم.

خب همونطور که گفتم کشف کردیم که وقتی یه نوترون به اتم اورانیوم 235،

شلیک می‌کنین، تبدیل میشه به اورانیوم 236 که خیلی ناپایداره و سریعا شکسته میشه

به دو تا اتم دیگه این وسطم یه مقدار انرژی آزاد میشه با چند تا دونه دیگه نوترون.

این نوترونا خودشون دوباره میتونن همین بلا رو سر چند تا

اتم دیگه بیارن درنتیجه یه واکنش شکافت زنجیره‌ای به وجود میاد.

ما اگه بخوایم از این منبع عظیم انرژی استفاده کنیم دو تا مشکل بزرگ سر راهمون هست.

مشکل اول اینه که اورانیوم 235 که برای واکنش شکافت

لازم داریم، فقط 0.7 درصد از کل اورانیومیه که تو طبیعت پیدا میشه.

99.3 درصدش اورانیوم 238 ئه. این مشکلو با غنی‌سازی تونستیم حل کنیم.

مشکل دوم اینه که اگه این واکنش زنجیره‌ای از کنترل خارج بشه دقیقا میشه

مث یه بمب اتمی که هر چی دورشه و تا شعاع چند کیلومتری خاکستر میکنه.

این مشکلم با مواد کندکننده‌ی نوترون حل کردیم.

اما غنی‌سازی چیه؟ غنی‌سازی یعنی بالا بردن غلظت اورانیوم 235 نسبت به اورانیوم 238.

یعنی اورانیوممون غنی‌تر میشه دیگه، اون غلظت