×

Mes naudojame slapukus, kad padėtume pagerinti LingQ. Apsilankę avetainėje Jūs sutinkate su mūsų slapukų politika.

image

Science in English, 05a. What's so sexy about math? Cédric Villani. Part 1/2.

05a. What's so sexy about math? Cédric Villani. Part 1/2.

What is it that French people do better than all the others? If you would take polls, the top three answers might be: love, wine and whining.

(Laughter)

Maybe. But let me suggest a fourth one: mathematics. Did you know that Paris has more mathematicians than any other city in the world? And more streets with mathematicians' names, too. And if you look at the statistics of the Fields Medal, often called the Nobel Prize for mathematics, and always awarded to mathematicians below the age of 40, you will find that France has more Fields medalists per inhabitant than any other country.

What is it that we find so sexy in math? After all, it seems to be dull and abstract, just numbers and computations and rules to apply. Mathematics may be abstract, but it's not dull and it's not about computing. It is about reasoning and proving our core activity. It is about imagination, the talent which we most praise.

It is about finding the truth. There's nothing like the feeling which invades you when after months of hard thinking, you finally understand the right reasoning to solve your problem. The great mathematician André Weil likened this -- no kidding -- to sexual pleasure. But noted that this feeling can last for hours, or even days. The reward may be big. Hidden mathematical truths permeate our whole physical world. They are inaccessible to our senses but can be seen through mathematical lenses.

Close your eyes for moment and think of what is occurring right now around you. Invisible particles from the air around are bumping on you by the billions and billions at each second, all in complete chaos. And still, their statistics can be accurately predicted by mathematical physics.

And open your eyes now to the statistics of the velocities of these particles. The famous bell-shaped Gauss Curve, or the Law of Errors -- of deviations with respect to the mean behavior.

This curve tells about the statistics of velocities of particles in the same way as a demographic curve would tell about the statistics of ages of individuals. It's one of the most important curves ever. It keeps on occurring again and again, from many theories and many experiments, as a great example of the universality which is so dear to us mathematicians.

Of this curve, the famous scientist Francis Galton said, "It would have been deified by the Greeks if they had known it. It is the supreme law of unreason." And there's no better way to materialize that supreme goddess than Galton's Board. Inside this board are narrow tunnels through which tiny balls will fall down randomly, going right or left, or left, etc. All in complete randomness and chaos.

Let's see what happens when we look at all these random trajectories together. (Board shaking) This is a bit of a sport, because we need to resolve some traffic jams in there. Aha. We think that randomness is going to play me a trick on stage. There it is.

Our supreme goddess of unreason. The Gauss Curve, trapped here inside this transparent box as Dream in "The Sandman" comics. For you I have shown it, but to my students I explain why it could not be any other curve. And this is touching the mystery of that goddess, replacing a beautiful coincidence by a beautiful explanation.

All of science is like this. And beautiful mathematical explanations are not only for our pleasure. They also change our vision of the world. For instance, Einstein, Perrin, Smoluchowski, they used the mathematical analysis of random trajectories and the Gauss Curve to explain and prove that our world is made of atoms.

It was not the first time that mathematics was revolutionizing our view of the world. More than 2,000 years ago, at the time of the ancient Greeks, it already occurred. In those days, only a small fraction of the world had been explored, and the Earth might have seemed infinite. But clever Eratosthenes, using mathematics, was able to measure the Earth with an amazing accuracy of two percent.

Here's another example. In 1673, Jean Richer noticed that a pendulum swings slightly slower in Cayenne than in Paris. From this observation alone, and clever mathematics, Newton rightly deduced that the Earth is a wee bit flattened at the poles, like 0.3 percent -- so tiny that you wouldn't even notice it on the real view of the Earth. These stories show that mathematics is able to make us go out of our intuition measure the Earth which seems infinite, see atoms which are invisible or detect an imperceptible variation of shape. And if there is just one thing that you should take home from this talk, it is this: mathematics allows us to go beyond the intuition and explore territories which do not fit within our grasp.

Here's a modern example you will all relate to: searching the Internet. The World Wide Web, more than one billion web pages -- do you want to go through them all? Computing power helps, but it would be useless without the mathematical modeling to find the information hidden in the data.

Let's work out a baby problem. Imagine that you're a detective working on a crime case, and there are many people who have their version of the facts. Who do you want to interview first? Sensible answer: prime witnesses.

You see, suppose that there is person number seven, tells you a story, but when you ask where he got if from, he points to person number three as a source. And maybe person number three, in turn, points at person number one as the primary source.

Now number one is a prime witness, so I definitely want to interview him – priority And from the graph we also see that person number four is a prime witness. And maybe I even want to interview him first, because there are more people who refer to him.

Learn languages from TV shows, movies, news, articles and more! Try LingQ for FREE

05a. What's so sexy about math? Cédric Villani. Part 1/2. |что||сексуального||математика|Седрик|| 05a. Was ist so sexy an Mathe? Cédric Villani. Teil 1/2. 05a. What's so sexy about math? Cédric Villani. Part 1/2. 05a. ¿Qué tienen de sexy las matemáticas? Cédric Villani. Parte 1/2. 05a. Qu'y a-t-il de si sexy dans les maths ? Cédric Villani. Partie 1/2. 05a. Cosa c'è di così sexy nella matematica? Cédric Villani. Parte 1/2. 05a.数学の何がそんなにセクシーなのか?セドリック・ヴィラーニパート1/2 05a. 수학의 매력은 무엇일까요? 세드릭 빌라니. 파트 1/2. 05a. Kas tokio seksualaus matematikoje? Cédric Villani. 1/2 dalis. 05a. Co jest takiego seksownego w matematyce? Cédric Villani. Część 1/2. 05a. O que é que a matemática tem de tão sexy? Cédric Villani. Parte 1/2. 05а. Что такого сексуального в математике? Седрик Виллани. Часть 1/2. 05a. Vad är så sexigt med matematik? Cédric Villani. Del 1/2. 05a. Matematiğin nesi bu kadar seksi? Cédric Villani. Bölüm 1/2. 05a. Що такого сексуального в математиці? Седрік Віллані. Частина 1/2. 05a.数学有什么魅力?塞德里克·维拉尼。第 1/2 部分。 05a.數學有什麼魅力?塞德里克·維拉尼。第 1/2 部分。

What is it that French people do better than all the others? Что французы делают лучше всех остальных? If you would take polls, the top three answers might be: love, wine and whining. ||||Umfragen||||||||||jammern ||||pesquisas||||||||vinho||queixa ||verbo auxiliar||encuestas||||||||||queja ||||||||||||||愚痴 Если бы вы проводили опросы, то тремя лучшими ответами могли бы быть: любовь, вино и нытье.

(Laughter) (Смех)

Maybe. Может быть. But let me suggest a fourth one: mathematics. Но позвольте мне предложить четвертое: математику. Did you know that Paris has more mathematicians than any other city in the world? |||||||Mathematiker||||||| Знаете ли вы, что в Париже больше математиков, чем в любом другом городе мира? And more streets with mathematicians' names, too. ||||数学者たち|| И еще несколько улиц с именами математиков. And if you look at the statistics of the Fields Medal, often called the Nobel Prize for mathematics, and always awarded to mathematicians below the age of 40, you will find that France has more Fields medalists per inhabitant than any other country. |||||||||Feldes|Medaille||||||||||verliehen||||||||||||||||||||| ||||||||||||||||||||awarded||||||||||||||||||||| |||||||||||||||Prêmio Nobel||||||||com menos de|||||||||||||||||| И если вы посмотрите на статистику Филдсовской медали, которую часто называют Нобелевской премией по математике и всегда присуждают математикам моложе 40 лет, вы обнаружите, что во Франции на одного жителя приходится больше Филдсовских медалистов, чем в любой другой стране.

What is it that we find so sexy in math? After all, it seems to be dull and abstract, just numbers and computations and rules to apply. ||||||langweilig|||||||||| ||||||||||||calculations|||| ||||||aburrido|||||||||| ||||||tedioso||||||cálculos|||| ||||||||||||計算|||| В конце концов, это кажется скучным и абстрактным, просто цифры, вычисления и правила. 毕竟,它似乎是乏味和抽象的,只是要应用数字,计算和规则。 Mathematics may be abstract, but it's not dull and it's not about computing. ||||||||||||Rechnen ||||||||||||計算すること |||abstrata||||||é|||cálculo It is about reasoning and proving our core activity. |||推論||証明する||| |||raciocínio||||atividade central| 这是关于推理和证明我们的核心活动。 It is about imagination, the talent which we most praise. |||||||||alabamos |||||||||louvamos

It is about finding the truth. There's nothing like the feeling which invades you when after months of hard thinking, you finally understand the right reasoning to solve your problem. ||||||invades||||||||||||||||| The great mathematician André Weil likened this -- no kidding -- to sexual pleasure. |||||compared|||||| |||||comparou||sem brincadeira|||| But noted that this feeling can last for hours, or even days. The reward may be big. Hidden mathematical truths permeate our whole physical world. |||permeate|||| |||permean|||| verdades matemáticas|||permeiam|||| They are inaccessible to our senses but can be seen through mathematical lenses. ||inaccessible||||||||||lenses ||||||||||||lentes matemáticas

Close your eyes for moment and think of what is occurring right now around you. ||||||||||passiert|||| Invisible particles from the air around are bumping on you by the billions and billions at each second, all in complete chaos. |||||||colidindo|||||||||||||| 周围空气中看不见的粒子正以每秒数十亿的速度撞击着你,所有这些都完全混乱了。 And still, their statistics can be accurately predicted by mathematical physics.

And open your eyes now to the statistics of the velocities of these particles. ||||||||||velocities||| 现在,请睁开眼睛查看这些粒子速度的统计数据。 The famous bell-shaped Gauss Curve, or the Law of Errors -- of deviations with respect to the mean behavior. ||||Gauss||||||||deviations|||||| |||||||||||||||||media|comportamiento |||em forma de sino|||||||as leis dos erros|||||||média (1)|comportamento médio

This curve tells about the statistics of velocities of particles in the same way as a demographic curve would tell about the statistics of ages of individuals. ||||||||||||||||demographic|||||||||| 该曲线以与人口统计曲线有关个体年龄统计的方式相同的方式说明粒子速度的统计信息。 It's one of the most important curves ever. |||||||de todas It keeps on occurring again and again, from many theories and many experiments, as a great example of the universality which is so dear to us mathematicians. |||||||||||||||||||||||querida||| |||||||||||||||||||||||preciosa|||

Of this curve, the famous scientist Francis Galton said, "It would have been deified by the Greeks if they had known it. |||||||||||||vergöttert|||Griechen||||| |||||||Galton||||||deified|||||||| |||||||||||||deificada|||||||| |||||||||||||divinizada|||||||| 关于这条曲线,著名科学家弗朗西斯·加尔顿说:“如果希腊人知道,它将被神化。 It is the supreme law of unreason." ||||||unreason ||||||a irracionalidade And there's no better way to materialize that supreme goddess than Galton's Board. |||||||||goddess||Galton's| ||||||materializar||||||a tábua de Galton 没有比高尔顿董事会更能实现这位最高女神的方法了。 Inside this board are narrow tunnels through which tiny balls will fall down randomly, going right or left, or left, etc. |||||||||balls||||||||||| ||||estreitas|túneis|||pequenas|||cairão||aleatoriamente||||||| All in complete randomness and chaos. |||randomness|| |||aleatoriedade||

Let's see what happens when we look at all these random trajectories together. |||||||||||trajectories| |||||nós||||||| (Board shaking) This is a bit of a sport, because we need to resolve some traffic jams in there. |balançando||||||||||||||congestionamento|engarrafamentos|| Aha. We think that randomness is going to play me a trick on stage. ||||||||mir|||auf| |||a aleatoriedade|||||||uma pegadinha||no primeiro ato 我们认为随机性会在舞台上给我带来麻烦。 There it is.

Our supreme goddess of unreason. ||deusa suprema||a irracionalidade 我们无理至上的女神。 The Gauss Curve, trapped here inside this transparent box as Dream in "The Sandman" comics. |||||||||||||Sandman| |||atrapada||||||||||| |||preso aqui||||||||||| 高斯曲线,被困在透明盒子里,就像《桑德曼》漫画中的梦一样。 For you I have shown it, but to my students I explain why it could not be any other curve. ||||mostrei||||||||||||||| And this is touching the mystery of that goddess, replacing a beautiful coincidence by a beautiful explanation. |||toca em||||||substituindo||||||| 这触动了那个女神的神秘,用美丽的解释代替了美丽的巧合。

All of science is like this. And beautiful mathematical explanations are not only for our pleasure. E||||||||| They also change our vision of the world. For instance, Einstein, Perrin, Smoluchowski, they used the mathematical analysis of random trajectories and the Gauss Curve to explain and prove that our world is made of atoms. |||Perrin|Smoluchowski||||||||||||||||||||||| |por exemplo|||||||análise matemática|||||||||||||||||||

It was not the first time that mathematics was revolutionizing our view of the world. 这不是数学第一次改变我们对世界的看法。 More than 2,000 years ago, at the time of the ancient Greeks, it already occurred. 两千多年前,在古希腊时代,它已经发生了。 In those days, only a small fraction of the world had been explored, and the Earth might have seemed infinite. But clever Eratosthenes, using mathematics, was able to measure the Earth with an amazing accuracy of two percent. |inteligente|||||||||||||exatidão|||

Here's another example. In 1673, Jean Richer noticed that a pendulum swings slightly slower in Cayenne than in Paris. ||||||pendulum|||||Cayenne||| |||||||oscila|um pouco|||||| From this observation alone, and clever mathematics, Newton rightly deduced that the Earth is a wee bit flattened at the poles, like 0.3 percent -- so tiny that you wouldn't even notice it on the real view of the Earth. |||||||||||||||wee|||||||||||||||||||||| ||||||||corretamente|||||||um pouquinho||achatada|||nos polos||||||||||||||||| These stories show that mathematics is able to make us go out of our intuition measure the Earth which seems infinite, see atoms which are invisible or detect an imperceptible variation of shape. |||||||||||||||||||||||||||||imperceptible||| |||||||||||||||medida||||||||||||||||| Estas||||a matemática||||||||||||||que||||||||||||||forma And if there is just one thing that you should take home from this talk, it is this: mathematics allows us to go beyond the intuition and explore territories which do not fit within our grasp. ||||||||||||||||||||||||||||territories|||||||grasp |||||||||||||||||||||||||||||||||dentro||alcance |||||||||||||||||||||||além de|||||||||se encaixam|ao nosso alcance||compreensão 如果您只想从这次演讲中带走一件事,那就是:数学使我们超越了直觉,探索了我们无法掌握的领域。

Here's a modern example you will all relate to: searching the Internet. aqui está||||vocês|||identificar-se com|||| The World Wide Web, more than one billion web pages -- do you want to go through them all? |||||||||||||||navegar por|| Computing power helps, but it would be useless without the mathematical modeling to find the information hidden in the data. |||||||||||modeling|||||||| |||||||||||modelagem matemática||||||||

Let's work out a baby problem. |||||um problema Imagine that you're a detective working on a crime case, and there are many people who have their version of the facts. Who do you want to interview first? Sensible answer: prime witnesses. ||número primo|testemunhas principais

You see, suppose that there is person number seven, tells you a story, but when you ask where he got if from, he points to person number three as a source. 您看到,假设有第七个人,给您讲了一个故事,但是当您询问他从哪里来时,他以第三个人为来源。 And maybe person number three, in turn, points at person number one as the primary source.

Now number one is a prime witness, so I definitely want to interview him – priority And from the graph we also see that person number four is a prime witness. |||||||||||||||||||||||||||||testemunha principal ||||||||||||||||||gráfico||||||||||testigo|testigo 现在第一名是主要证人,所以我绝对想采访他-优先级从图中我们还可以看到第四名是主要证人。 And maybe I even want to interview him first, because there are more people who refer to him. |||||||||||||||||ihn |||incluso|||||||||||||| 也许我什至想先采访他,因为有更多人提到他。