Naturfilosoferna: Zenon
Zenon från Elea (ca 490–430 f kr) var en naturfilosof mest känd för sättet han argumenterade på.
Han gjorde detta huvudsakligen genom att konstruera paradoxer
och några av dem har förbryllat människor ända sedan dess.
Han utarbetade dessa paradoxer som argument bland annat för att rörelse var omöjligt
och att den verklighet vi uppfattar måste vara en illusion.
Det mest kända exemplet är ”Akilles och sköldpaddan”.
Zenon använder sig av logik och en metod som idag kallas för reductio ad absurdum
– om ett resonemang leder till en motsägelse så måste dess motsats vara sann.
Intressantast med dessa paradoxer är hur ett strängt logiskt resonemang
till synes kan leda till en felaktig slutsats.
Genom sina paradoxer visade Zenon att filosofi och vetenskap kräver mer av oss än det vi först tar för givet
– och därför förtjänar han en plats i filosofihistorien.
Vad händer om vi låter en vältränad löpare (i Zenons exempel Akilles, huvudpersonen i Illiaden)
tävla i ett 100-meterslopp mot en sköldpadda? Givetvis vinner löparen.
Men vänta lite, säger Zenon. Låt mig visa att strikt logik hävdar motsatsen.
Och logiken ljuger inte, varför vår uppfattning om verkligheten måste vara fel.
Vi ställer upp de tävlande, men för att göra tävlingen lite rättvisare (och för att paradoxen ska uppstå)
ger vi sköldpaddan ett visst försprång.
För att Akilles ska kunna vinna måste han först passera sköldpaddan
– och detta förutsätter att han först kommer ifatt den.
Men detta är en logisk omöjlighet menar Zenon, och förklarar:
Under den tid det tar för Akilles att komma till den plats sköldpaddan utgick ifrån
har sköldpaddan hunnit förflyttat sig ytterligare en sträcka.
På den tid det nu tar för Akilles att springa även denna sträcka har sköldpaddan flyttat sig ytterligare en bit.
Så kan man fortsätta att resonera tills den givna slutsatsen blir
att Akilles aldrig kommer ikapp sköldpaddan.
Avståndet som skiljer dem åt blir med tiden minimalt men aldrig noll.
Renodlar man resonemanget i paradoxen kan man visa att inget över huvud taget kan röra sig.
Ser du problematiken, och hur skulle man i så fall kunna bemöta detta argument?