×

我们使用 cookie 帮助改善 LingQ。通过浏览本网站,表示你同意我们的 cookie 政策.

image

BBC - 6 Minute English (YouTube), Training artificial intelligence: 6 Minute English - YouTube

Training artificial intelligence: 6 Minute English - YouTube

Hello. This is 6 Minute English from BBC Learning

English. I'm Neil.

And I'm Sam.

Do you like cooking, Sam? There's a new

recipe I've been trying out - it's for

‘frosted oysters'.

Frosted oysters?! Sounds… unusual. How

do you make it?

Well, take a pound of chicken, then some cubed

pork and half a crushed garlic.

Eh? I thought you said it was for ‘frosted

oysters', whatever they are.

Yes, that's right. Now heat it up until

boiling and serve with custard.

Ugh, that sounds disgusting! Who on earth

told you that recipe?

It's not ‘who' told me, Sam, but ‘what'.

In fact, that recipe was made by computers

using artificial intelligence, or AI, which

is the topic of today's programme. In real

life, AI is making huge progress - from car

satnavs to detecting cancer cells. But as

you can see from that revolting recipe, things

don't always go according to plan.

So, just how intelligent is artificial intelligence?

I mean, it definitely needs some cooking lessons!

Right. AI is not as intelligent as we tend

to think. AI programmes use artificial brain

cells to roughly imitate real brain cell activity,

but they're still a long way behind human

levels of intelligence. And that's my quiz

question – in terms of brain cell count,

what level of intelligence is AI currently

working at? Is AI as smart as:

a) a frog, b) an earthworm or

c) a bumblebee

Well, I don't think any of those are good

cooks either, to be honest. I'll say c)

a bumblebee, because at least they can

make honey!

Nice guess, Sam. We'll find out the answer

later. But first let's find out more about

how AI misunderstandings like the oyster recipe

can happen. Janelle Shane is the author of

‘You Look Like a Thing and I Love You'

in which she tells her amusing

experiences and bizarre experiments with AI.

You Look Like a Thing and I Love You – that's

a strange title for a book, Neil.

Yes. It's another example of AI

miscommunication.

The book title is what a AI produced when

asked to write chat-up lines – remarks men

and women make to start up a conversation

with someone they don't know but find attractive.

Here she is talking to the BBC World Service

programme More or Less:

So ‘Machine learning' is what most programmers

mean when they say ‘AI'. In the programme

that we're used to, if you want to have

a computer programme solve a problem you have

to have a human programmer write down exhaustive

step-by-step instructions on how to do everything.

But with ‘machine learning' you just give

it the goal, and then the programme figures

out via trial and error how it's going to

solve that problem.

So even though we're talking about machines

learning for themselves, there still need

to be humans involved at the start of the

journey. This human teaching is done by computer

programmers – people who write, or code,

the computer programmes used by AI.

Right. These programmers write algorithms

– a set of rules or procedures to be followed

in problem-solving exercises. So, for example,

the AI that wrote that oyster recipe read

thousands of other recipes before coming up

with its own version.

In other words, artificial intelligence uses

a process of trial and error – repeating

the same task over and over until finding

the most successful way. Only in the case

of the oyster recipe, there was more ‘error'

than ‘trial'!

Well, according to Janelle Shane, we can learn

a lot about something by seeing how it

goes wrong. Here she is, talking about an

AI which had been told to solve maths problems:

It seemed to be that it was getting scored

on how many wrong answers it got, and it was

supposed to be minimising the number of wrong

answers, and just by a stroke of luck as part

of its trial and error flailing around, one

of the flails it did accidentally deleted

the solutions list, and then it and everybody

else got a perfect score.

So, AIs learn by minimising their errors – reducing

them as much as possible. And sometimes,

these algorithms only discover the right answer

by a stroke of luck – when something unexpected

happens by good luck or chance. It seems to

me that they're not so intelligent

after all!

Well, let's settle it once and for all by

answering today's quiz question.

Remember I asked you how intelligent AI was

in terms of brain cell count and you said,

as intelligent as...

I said c) a bumblebee.

Well, here's Janelle again with the answer…

If you're looking at rough computing power,

the algorithms we're working with are probably

somewhere around the level of an earthworm.

So, the correct answer was b) as clever as

an earthworm! No wonder AIs can't cook!

Or take a maths test without cheating! In

this programme we've been looking at artificial

intelligence, or AI, and seeing how programmers

– that's people who write instructions

for computers to follow create algorithms

– sets of rules used in problem-solving.

AI learns through trial and error – repeating

the same activity again and again until discovering

the best way, and minimising – reducing

as much as possible, the number of errors

it makes.

And success can be the result of a stroke

of luck, when something unexpected happens

purely by chance, although so far that hasn't

helped AIs to write good chat-up lines – the

flattering remarks people make to get to know

someone they find attractive.

And AIs don't know much about cooking oysters

either!

That's all from us from this programme.

Be sure to join us again for more topical

discussion and vocabulary at 6 Minute English

for BBC Learning English. Bye for now!

Bye.

Learn languages from TV shows, movies, news, articles and more! Try LingQ for FREE

Training artificial intelligence: 6 Minute English - YouTube آموزش هوش مصنوعی||||| đào tạo||||| Trénink umělé inteligence: 6 minut angličtiny - YouTube Training künstlicher Intelligenz: 6 Minuten Englisch - YouTube Training artificial intelligence: 6 Minute English - YouTube Entrenamiento de la inteligencia artificial: 6 Minute English - YouTube Formazione dell'intelligenza artificiale: 6 minuti in inglese - YouTube 人工知能のトレーニング6分間英語 - YouTube Szkolenie sztucznej inteligencji: 6 Minute English - YouTube Treinar a inteligência artificial: 6 Minute English - YouTube Обучение искусственного интеллекта: 6 Minute English - YouTube 训练人工智能:6 分钟英语 - YouTube 訓練人工智慧:6 分鐘英語 - YouTube

Hello. This is 6 Minute English from BBC Learning

English. I'm Neil.

And I'm Sam.

Do you like cooking, Sam? There's a new

recipe I've been trying out - it's for recipe I've been trying out - it's for 我一直在尝试的食谱 - 这是为了

‘frosted oysters'. frosted|oysters com gelo|ostras zamarznięte| “磨砂牡蛎”。

Frosted oysters?! Sounds… unusual. How یخ‌زده|||| |||strange|

do you make it?

Well, take a pound of chicken, then some cubed ||||||||gewürfelte |||pound||||some|diced ||||||||cortado ||||||||pokrojone w kostkę Vezměte půl kila kuřecího masa, pak na kostičky nakrájené 好吧,拿一磅鸡肉,然后切块

pork and half a crushed garlic. گوشت خوک||||نیمه له‌شده|سیر له‌شده ||||crushed|garlic vepřové maso a polovinu rozdrceného česneku. 猪肉和半个压碎的大蒜。

Eh? I thought you said it was for ‘frosted ||||||||یخ‌زده Cože? Myslel jsem, že jsi říkal, že je to pro "zmrzlé". 呃?我以为你说这是为了“磨砂”

oysters', whatever they are. صدف‌ها، هر چه که هستند||| |o que quer que|| ústřice", ať už jsou jakékoliv. 牡蛎,不管它们是什么。

Yes, that's right. Now heat it up until Ano, je to tak. Teď ji zahřejte, dokud 恩,那就对了。现在将其加热直至

boiling and serve with custard. ||||کاسترد ||||custard ||||creme ||||krem vaříme a podáváme s pudinkem. 煮沸并与蛋奶冻一起食用。

Ugh, that sounds disgusting! Who on earth |||disgusting||| To zní nechutně! Kdo proboha 呃,听起来很恶心!到底是谁

told you that recipe? ti ten recept řekl?

It's not ‘who' told me, Sam, but ‘what'.

In fact, that recipe was made by computers Tento recept byl ve skutečnosti vytvořen pomocí počítačů 事实上,那个食谱是由电脑制作的

using artificial intelligence, or AI, which

is the topic of today's programme. In real je tématem dnešního pořadu. V reálném 是今天节目的主题。现实

life, AI is making huge progress - from car život, AI dělá obrovský pokrok - od auta

satnavs to detecting cancer cells. But as Navigationssysteme|||||| satellite navigations|||cancer detection|cells|| os sistemas de navegação|||||| nawigacje satelitarne|||||| satelitní navigace k detekci rakovinných buněk. Ale jak 卫星导航来检测癌细胞。但作为

you can see from that revolting recipe, things |||||widerlich|| |||||revolting|| |||||revoltante|| 你可以从那个令人反感的食谱中看到,事情

don't always go according to plan. 不要总是按计划行事。

So, just how intelligent is artificial intelligence? Então, quão inteligente é a inteligência artificial? 那么,人工智能到底有多智能呢?

I mean, it definitely needs some cooking lessons! 我的意思是,它肯定需要一些烹饪课!

Right. AI is not as intelligent as we tend ||||||||tend to Vpravo. Umělá inteligence není tak inteligentní, jak máme tendenci 正确的。人工智能并不像我们想象的那么聪明

to think. AI programmes use artificial brain 去思考。 AI程序使用人工大脑

cells to roughly imitate real brain cell activity, ||approximately||||| buněk tak, aby zhruba napodobovaly činnost skutečných mozkových buněk, 细胞大致模仿真实的脑细胞活动,

but they're still a long way behind human 但它们距离人类还有很长的路要走

levels of intelligence. And that's my quiz 智力水平。这就是我的测验

question – in terms of brain cell count, otázka - z hlediska počtu mozkových buněk, pergunta - em termos de contagem de células cerebrais, 问题——就脑细胞计数而言,

what level of intelligence is AI currently jaká je v současnosti úroveň inteligence AI qual o nível de inteligência da IA atualmente AI目前的智能水平是多少

working at? Is AI as smart as: pracujete? Je umělá inteligence stejně chytrá jako:

a) a frog, b) an earthworm or |||||Regenwurm| ||frog|||earthworm| |||||uma minhoca| a) 青蛙,b) 蚯蚓或

c) a bumblebee ||eine Hummel ||bumblebee ||um zangão ||trzmiel c) 一只大黄蜂

Well, I don't think any of those are good No, nemyslím si, že by některý z nich byl dobrý.

cooks either, to be honest. I'll say c) ani kuchaři, abych byl upřímný. Řeknu c) 老实说,他也做饭。我会说c)

a bumblebee, because at least they can čmeláka, protože ti alespoň mohou

make honey! |honey |mel vyrobit med!

Nice guess, Sam. We'll find out the answer Dobrý odhad, Same. Odpověď se dozvíme 不错的猜测,萨姆。我们会找出答案

later. But first let's find out more about

how AI misunderstandings like the oyster recipe ||سوء تفاهم‌های هوش مصنوعی|||| |||||ostra| jak AI nedorozumění jako recept na ústřice 人工智能如何误解牡蛎食谱

can happen. Janelle Shane is the author of ||Janelle Shane||||| 可以发生。贾妮尔·谢恩是以下书的作者

‘You Look Like a Thing and I Love You' 'Vypadáš jako věc a já tě miluju' "Ты похожа на вещь, и я люблю тебя". “你看起来像个东西,我爱你”

in which she tells her amusing |||||funny |||||divertida 她在其中告诉她有趣的

experiences and bizarre experiments with AI. ||عجیب و غریب||| ||bizarre||| zážitky a bizarní experimenty s umělou inteligencí. 人工智能的经历和奇怪的实验。

You Look Like a Thing and I Love You – that's |شبیه||||||||

a strange title for a book, Neil. |unusual||||| 尼尔,这本书的书名很奇怪。

Yes. It's another example of AI

miscommunication. miscommunication má comunicação 沟通不畅。

The book title is what a AI produced when Název knihy je to, co AI vytvořila, když 书名是人工智能在以下情况下产生的内容:

asked to write chat-up lines – remarks men ||||||Bemerkungen(1)| ||||||comments or statements| požádáni, aby napsali chat-up linky - poznámky muži pedido para escrever frases de chat - comentários homens 被要求写搭讪台词——评论男士

and women make to start up a conversation a ženy se snaží navázat konverzaci

with someone they don't know but find attractive. s někým, koho neznají, ale připadá jim atraktivní.

Here she is talking to the BBC World Service Aqui está ela a falar para o Serviço Mundial da BBC 她正在接受 BBC World Service 采访

programme More or Less: programa Mais ou Menos: 程序或多或少:

So ‘Machine learning' is what most programmers Většina programátorů se tedy "strojově učí". Portanto, "aprendizagem automática" é o que a maioria dos programadores 所以“机器学习”是大多数程序员的目标

mean when they say ‘AI'. In the programme když se řekne "umělá inteligence". V programu quando se fala em "IA". No programa 当他们说“AI”时是什么意思?节目中

that we're used to, if you want to have na které jsme zvyklí, pokud chcete mít a que estamos habituados, se quisermos ter

a computer programme solve a problem you have um programa de computador resolve um problema que tem

to have a human programmer write down exhaustive |||||||ausführlich ||||programmer|||detailed and complete |||||||exaustiva nechat lidského programátora zapsat vyčerpávající ter um programador humano a escrever exaustivamente

step-by-step instructions on how to do everything. návod krok za krokem, jak vše provést. 有关如何执行所有操作的分步说明。

But with ‘machine learning' you just give Ale se "strojovým učením" prostě dáte

it the goal, and then the programme figures to cíl, a pak program čísla 这是目标,然后是程序数字

out via trial and error how it's going to ||trial|||||| zjistit metodou pokusů a omylů, jak se to bude 通过反复试验知道结果如何

solve that problem. 解决这个问题。

So even though we're talking about machines Takže i když mluvíme o strojích. Portanto, apesar de estarmos a falar de máquinas 所以即使我们谈论的是机器

learning for themselves, there still need 自学还是有必要的

to be humans involved at the start of the aby se lidé zapojili na začátku 人类从一开始就参与其中

journey. This human teaching is done by computer cesta. Tuto lidskou výuku provádí počítač viagem. Este ensino humano é efectuado por computador 旅行。这种人工教学是由计算机完成的

programmers – people who write, or code, programátoři - lidé, kteří píší nebo kódují,

the computer programmes used by AI. počítačové programy používané umělou inteligencí.

Right. These programmers write algorithms Vpravo. Tito programátoři píší algoritmy

– a set of rules or procedures to be followed |||||procedures||| - soubor pravidel nebo postupů, které je třeba dodržovat – 一组需要遵循的规则或程序

in problem-solving exercises. So, for example, při řešení problémů. Tak například, 在解决问题的练习中。所以,举例来说,

the AI that wrote that oyster recipe read |||||Auster|| UI, která napsala recept na ústřice.

thousands of other recipes before coming up tisíce dalších receptů, než přišel 在出现之前还有数以千计的其他食谱

with its own version. 有自己的版本。

In other words, artificial intelligence uses |||künstliche||

a process of trial and error – repeating |||testing process||| |||tentativa||| proces pokusů a omylů - opakování 反复试验的过程

the same task over and over until finding |همان|وظیفه تکراری|مکرر||||

the most successful way. Only in the case nejúspěšnější způsob. Pouze v případě

of the oyster recipe, there was more ‘error'

than ‘trial'! 比‘审判’!

Well, according to Janelle Shane, we can learn

a lot about something by seeing how it 通过观察某事物的情况来了解它的很多信息

goes wrong. Here she is, talking about an 出错。她在这里,正在谈论一个

AI which had been told to solve maths problems: UI, která měla za úkol řešit matematické úlohy: IA que tinha sido instruída para resolver problemas de matemática:

It seemed to be that it was getting scored Zdálo se, že se skóruje. Parecia que estava a ficar marcado Казалось, что он набирает очки 看来是要得分了

on how many wrong answers it got, and it was na to, kolik špatných odpovědí dostala, a to bylo по количеству неправильных ответов, и это было

supposed to be minimising the number of wrong |||minimieren|||| |||minimizing|||| |||minimizando|||| minimalizovat počet chybných предполагается минимизировать количество неправильных 应该尽量减少错误的数量

answers, and just by a stroke of luck as part |||||stroke of luck|||| odpovědi, a jen díky štěstí jako součást ответы, и просто по счастливой случайности, как часть 答案,并且只是运气好作为一部分

of its trial and error flailing around, one |||||herumstochern|| |||||flailing|| |||||tentativa|| jeho pokusů a omylů, jeden в процессе проб и ошибок, один 它的反复试验和错误,一

of the flails it did accidentally deleted ||der Flails|||| ||flails||||delete ||as vergas|||| mlátiček, které omylem smazal das lâminas que apagou acidentalmente из хвостов, которые он случайно удалил. 它意外删除的连枷

the solutions list, and then it and everybody seznam řešení, a pak je a všechny ostatní список решений, а затем он и все остальные 解决方案列表,然后是它和每个人

else got a perfect score. ostatní získali perfektní skóre. все остальные получили отличные оценки. 其他人都得到了满分。

So, AIs learn by minimising their errors – reducing ||||کاهش دادن||| |KI|||||| Umělá inteligence se tedy učí minimalizací svých chyb - snižováním Таким образом, ИИ обучается, минимизируя свои ошибки - уменьшая

them as much as possible. And sometimes, ||تا حد امکان||||

these algorithms only discover the right answer 这些算法只能发现正确的答案

by a stroke of luck – when something unexpected |||||||غیرمنتظره ||sorte||sorte||| šťastnou náhodou - když se stane něco neočekávaného.

happens by good luck or chance. It seems to

me that they're not so intelligent que não são assim tão inteligentes

after all! Afinal de contas! 毕竟!

Well, let's settle it once and for all by ||resolver|||||| Dobře, pojďme to jednou provždy vyřešit tím. Что ж, давайте разберемся с этим раз и навсегда. 好吧,让我们一劳永逸地解决这个问题

answering today's quiz question.

Remember I asked you how intelligent AI was

in terms of brain cell count and you said, co se týče počtu mozkových buněk, a vy jste řekl, 就脑细胞计数而言,你说,

as intelligent as... stejně inteligentní jako...

I said c) a bumblebee.

Well, here's Janelle again with the answer…

If you're looking at rough computing power, Pokud se díváte na hrubý výpočetní výkon, 如果你考虑的是粗略的计算能力,

the algorithms we're working with are probably algoritmy, se kterými pracujeme, jsou pravděpodobně os algoritmos com que estamos a trabalhar são provavelmente 我们正在使用的算法可能是

somewhere around the level of an earthworm. algures ao nível de uma minhoca. 大约在蚯蚓水平的地方。

So, the correct answer was b) as clever as

an earthworm! No wonder AIs can't cook! земляной червь! Неудивительно, что ИИ не умеют готовить! 一条蚯蚓!难怪人工智能不会做饭!

Or take a maths test without cheating! In Nebo napište test z matematiky bez podvádění! Na

this programme we've been looking at artificial 我们一直在研究这个人工程序

intelligence, or AI, and seeing how programmers inteligence, neboli AI, a zjistit, jak programátoři

– that's people who write instructions - to jsou lidé, kteří píší návody – 那些写指令的人

for computers to follow create algorithms 让计算机遵循创建算法

– sets of rules used in problem-solving. - soubory pravidel používaných při řešení problémů.

AI learns through trial and error – repeating

the same activity again and again until discovering 一次又一次相同的活动,直到发现

the best way, and minimising – reducing nejlepší způsob, a minimalizace - snížení

as much as possible, the number of errors

it makes.

And success can be the result of a stroke 成功可能是中风的结果

of luck, when something unexpected happens 运气好,当意外发生时

purely by chance, although so far that hasn't por mero acaso, embora até agora isso não tenha acontecido 纯粹是偶然,尽管到目前为止还没有

helped AIs to write good chat-up lines – the 帮助人工智能写出好的搭讪台词——

flattering remarks people make to get to know schmeichelhafte||||||| complimentary||||||| lisonjeiras||||||| льстивые замечания, которые люди делают, чтобы познакомиться 人们为了结识而说的奉承话

someone they find attractive.

And AIs don't know much about cooking oysters E|||||||

either! 任何一个!

That's all from us from this programme.

Be sure to join us again for more topical ||||||||atuais 请务必再次加入我们以获取更多话题

discussion and vocabulary at 6 Minute English 6 分钟英语的讨论和词汇

for BBC Learning English. Bye for now!

Bye.