Wie funktioniert das Universum? - Die Stringtheorie erklärt
Was ist das wahre Wesen des Universums?
Um das zu beantworten,
denken wir Menschen uns alle möglichen Geschichten aus.
Die überprüfen wir dann, um festzustellen,
welche stimmen könnten und welche wir verwerfen müssen.
Aber je mehr wir herausfinden,
umso komplizierter und seltsamer werden die Geschichten.
Manchmal so sehr, dass wir kaum mehr wissen,
worum es eigentlich geht.
Die Stringtheorie zum Beispiel.
Eine berühmte, aber sehr kontroverse und oft missverstandene Theorie
über die Natur aller Dinge.
Warum haben wir sie uns ausgedacht? Und stimmt sie?
Oder ist das nur so eine Idee,
von der wir uns wieder verabschieden sollten?
(Fröhliche Musik)
Um die wahre Natur der Realität zu begreifen,
haben wir die Welt von Nahem betrachtet -
und Erstaunliches entdeckt:
wunderbare Landschaften im Staub,
ganze Zoos voller skurriler Kreaturen,
komplexe Proteinroboter.
Sie alle sind Molekülstrukturen,
die aus zahllosen noch kleineren Teilen bestehen:
Atomen.
Wir dachten, sie seien der Grundstein der Realität.
Bis wir etwas wirklich Unteilbares fanden:
Elementarteilchen.
Jetzt hatten wir ein Problem.
Elementarteilchen sind so klein,
dass wir sie gar nicht mehr sehen können.
Überleg mal, was bedeutet es, zu sehen?
Dazu braucht es Licht, eine elektromagnetische Welle.
Diese Welle trifft auf die Oberfläche eines Dings
und wird zu unserem Auge reflektiert.
Die Welle transportiert also Informationen von dem Objekt.
Und unsre Augen und unser Gehirn
machen daraus ein Bild.
Du siehst Dinge also nur,
indem du mit ihnen interagierst.
Etwas zu sehen bedeutet, es zu berühren.
Es ist ein aktiver Prozess, kein passiver.
Und mit den meisten Dingen ist das kein Problem.
Aber Teilchen sind sehr, sehr, sehr klein.
So klein, dass die elektromagnetischen Wellen,
mit denen wir sehen,
zu groß sind, um sie zu berühren.
Sichtbares Licht gleitet einfach über sie hinweg.
Wir können es mit elektromagnetischen Wellen versuchen,
die viel kürzere Wellenlägen haben.
In der Quantenphysik bedeutet eine kurze Wellenlänge aber
mehr Energie.
Wenn also eine Welle mit jeder Menge Energie ein Teilchen berührt,
versetzt sie dem Teilchen einen Stoß.
Indem wir es uns anschauen, verändern wir es.
In der Quantenphysik können wir niemals gleichzeitig wissen,
wo ein Teilchen ist und wohin es sich bewegt.
Das ist so wichtig, dass es einen Namen dafür gibt:
die Heisenbergsche Unschärferelation.
Sie ist die Basis der Quantenphysik.
Aber wie sieht ein Teilchen denn nun aus?
Was ist seine wahre Natur?
Wir wissen es nicht.
Wenn wir ganz genau hinsehen,
sehen wir nur einen unscharfen Einflussbereich,
aber nicht die Teilchen selbst.
Wir wissen nur, dass es sie gibt.
Aber wie können wir dann Forschung über sie betreiben?
Indem wir eine Geschichte erfunden haben.
Eine mathematische Fiktion, die Geschichte des Punktteilchens.
Wir haben abgemacht, dass wir so tun,
als ob ein Teilchen ein Punkt im Raum ist.
Jedes Elektron ist ein Punkt
mit einer bestimmten elektrischen Ladung
und einer bestimmten Masse - ununterscheidbar voneinander.
So konnten wir sie definieren
und alle ihre Interaktionen berechnen.
In der Quantenfeldtheorie geht das sehr präzise,
was eine ganze Menge Probleme löst.
Das ganze Standardmodell der Teilchenphysik
baut darauf auf.
Und es kann vieles ziemlich gut vorhersagen.
Zum Beispiel konnten gewisse Quanteneigenschaften von Elektronen
mit einer Genauigkeit von 0,0000000000002 Prozent
geprüft werden.
Obwohl Elementarteilchen also nicht wirklich Punkte sind,
erhalten wir ein ziemlich genaues Bild des Universums,
indem wir so tun, also ob.
Das hat nicht nur die Wissenschaft weitergebracht,
sondern ziemlich viel in der Technologie
erst ermöglicht, die wir heute tagtäglich benutzen.
Ein großes Problem gibt es aber: die Schwerkraft.
Die Quantenmechanik besagt,
dass alle physikalischen Kräfte von Teilchen ausgehen.
Aber laute Einsteins allgemeiner Relativitätstheorie
ist die Schwerkraft keine Kraft wie alle anderen im Universum.
Wenn das Universum ein Theater wäre,
wären Teilchen die Schauspieler und die Schwerkraft die Bühne.
Kurz gesagt:
Die Schwerkraft ist eine Theorie der Geometrie der Raumzeit selbst.
Also der Distanzen, die wir absolut präzise festmachen können müssen.
Weil es in der Quantenwelt aber unmöglich ist,
Dinge genau zu messen,
ist unsere Geschichte der Schwerkraft
nicht mit der Geschichte der Quantenphysik vereinbar.
Als wir versuchten, der Geschichte
die Schwerkraft einfach als neues Teilchen hinzuzufügen,
ging die Matte nicht mehr auf.
Das ist ein großes Problem.
Wenn wir Schwerkraft, Quantenphysik und das Standardmodell
zusammenbringen könnten,
hätten wir eine allumfassende Weltformel.
Also haben wir uns eine kluge neue Geschichte ausgedacht.
Was ist komplexer als ein Punkt?
Eine Linie oder ein Band, auf Englisch "String".
So kam es zur Stringtheorie.
Die Stringtheorie ist so elegant,
weil sie verschiedene Elementarteilchen
als verschiedene Schwingungsformen eines Strings beschreibt.
Wie eine Geigensaite, die je nach Schwingung
verschiedene Töne erzeugt,
kann ein String verschiedene Teilchen ergeben.
Und am allerwichtigsten:
auch Schwerkraft.
Die Stringtheorie schien damit sämtliche grundlegende Kräfte
im Universum zu vereinen.
Das hat natürlich eine riesige Begeisterung
und einen ziemlichen Hype ausgelöst.
Die Stringtheorie wurde schnell als mögliche Weltformel angesehen.
Viel von der Mathematik für eine konsistente Stringtheorie
funktioniert nicht in unseren Universen,
in drei räumliche und einer zeitlichen Dimension.
Damit die Stringtheorie aufgeht, benötigt sie zehn Dimensionen.
Also führten die String-Theoretiker
ihre Berechnungen für Modelluniversen durch.
Und versuchten dann für unser eigenes Universum
die sechs Extradimensionen wieder loszuwerden.
Bis jetzt ist das aber niemandem gelungen.
Und keine der Voraussagen der Stringtheorie
konnte je in einem Experiment nachgewiesen werden.
Die Stringtheorie hat also auch nicht
die wahre Natur unseres Universums offengelegt.
Man könnte also behaupten,
dass die Stringtheorie ziemlich unnütz ist.
In der Wissenschaft geht's schließlich
um Experimente und Vorhersagen.
Wenn Strings dafür nicht taugen, was sollen wir dann mit ihnen?
Letztendlich kommt es darauf an, wie wir sie nutzen.
Physik lässt sich mit Mathe beschreiben.
Zwei plus zwei ist vier.
Das ist einfach so, ganz egal, wie du das findest.
Und die Mathe hinter der Stringtheorie
geht eindeutig auf.
Und deshalb ist die Stringtheorie trotzdem nützlich.
Stell dir vor, du willst eine Yacht bauen,
hast aber nur Pläne für ein kleines Ruderboot.
Da gibt es viele Unterschiede: der Motor, das Material, die Größe.
Aber im Grunde sind die beiden trotzdem gleich.
Dinge, die schwimmen.
Wenn du die Pläne für ein Ruderboot studierst,
lernst du vielleicht auch etwas Nützliches für den Bau einer Yacht.
Mit der Stringtheorie können wir also wenigstens versuchen,
einige der Fragen der Quantenphysik zu beantworten,
die uns schon seit Jahrzehnten vor ein Rätsel stellen.
Etwa, wie schwarze Löcher funktionieren
oder das Informationsparadoxon
Die Stringtheorie könnte uns dort einen Schritt weiterbringen.
So wird sie zu einem wertvollen Werkzeug
der theoretischen Physik,
das zur Entdeckung vieler neuer Aspekte der Quantenwelt
und zu wunderschöner Mathematik geführt hat.
Die Geschichte der Stringtheorie endet vielleicht nicht
in der Weltformel.
Aber genau wie die Geschichte des Punktteilchens
könnte sie trotzdem sehr nützlich sein.
Die wahre Natur der Realität haben wir noch nicht entdeckt.
Aber wir werden uns weiter Geschichten ausdenken,
und versuchen, die Wahrheit zu finden,
bis wir sie eines Tages hoffentlich herauskriegen.
(Vogelgezwitscher, sanfte Musik)